Wilson, Matthew A.
A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation
Linderman, Scott W., Johnson, Matthew J., Wilson, Matthew A., Chen, Zhe
Rodent hippocampal population codes represent important spatial information about the environment during navigation. Several computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. Here we extend our previous work and propose a nonparametric Bayesian approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a nonparametric Bayesian model. Specifically, to analyze rat hippocampal ensemble spiking activity, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). We demonstrate the effectiveness of our Bayesian approaches on recordings from a freely-behaving rat navigating in an open field environment. We find that MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes.
Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks
Wilson, Matthew A., Bower, James M.
It has been known for many years that specific regions of the working cerebral cortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties of these networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures. We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.
Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks
Wilson, Matthew A., Bower, James M.
It has been known for many years that specific regions of the working cerebralcortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties ofthese networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures.We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.
Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks
Wilson, Matthew A., Bower, James M.
It has been known for many years that specific regions of the working cerebral cortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties of these networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures. We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.
GENESIS: A System for Simulating Neural Networks
Wilson, Matthew A., Bhalla, Upinder S., Uhley, John D., Bower, James M.
GENESIS: A System for Simulating Neural Networks
Wilson, Matthew A., Bhalla, Upinder S., Uhley, John D., Bower, James M.
A Computer Simulation of Olfactory Cortex with Functional Implications for Storage and Retrieval of Olfactory Information
Bower, James M., Wilson, Matthew A.
A Computer Simulation of Olfactory Cortex With Functional Implications for Storage and Retrieval of Olfactory Information Matthew A. Wilson and James M. Bower Computation and Neural Systems Program Division of Biology, California Institute of Technology, Pasadena, CA 91125 ABSTRACT Based on anatomical and physiological data, we have developed a computer simulation of piriform (olfactory) cortex which is capable of reproducing spatial and temporal patterns of actual cortical activity under a variety of conditions. Using a simple Hebb-type learning rule in conjunction with the cortical dynamics which emerge from the anatomical and physiological organization of the model, the simulations are capable of establishing cortical representations for different input patterns. The basis of these representations lies in the interaction of sparsely distributed, highly divergent/convergent interconnections between modeled neurons. We have shown that different representations can be stored with minimal interference. Further, we have demonstrated that the degree of overlap of cortical representations for different stimuli can also be modulated. Both features are presumably important in classifying olfactory stimuli.
A Computer Simulation of Olfactory Cortex with Functional Implications for Storage and Retrieval of Olfactory Information
Bower, James M., Wilson, Matthew A.
Using a simple Hebb-type learning rule in conjunction withthe cortical dynamics which emerge from the anatomical and physiological organization ofthe model, the simulations are capable of establishing cortical representations for different input patterns. The basis of these representations lies in the interaction of sparsely distributed, highly divergent/convergent interconnections between modeled neurons. We have shown that different representations can be stored with minimal interference.