Wilson, Kurt
GLARE: A Dataset for Traffic Sign Detection in Sun Glare
Gray, Nicholas, Moraes, Megan, Bian, Jiang, Wang, Alex, Tian, Allen, Wilson, Kurt, Huang, Yan, Xiong, Haoyi, Guo, Zhishan
Real-time machine learning object detection algorithms are often found within autonomous vehicle technology and depend on quality datasets. It is essential that these algorithms work correctly in everyday conditions as well as under strong sun glare. Reports indicate glare is one of the two most prominent environment-related reasons for crashes. However, existing datasets, such as the Laboratory for Intelligent & Safe Automobiles Traffic Sign (LISA) Dataset and the German Traffic Sign Recognition Benchmark, do not reflect the existence of sun glare at all. This paper presents the GLARE (GLARE is available at: https://github.com/NicholasCG/GLARE_Dataset ) traffic sign dataset: a collection of images with U.S-based traffic signs under heavy visual interference by sunlight. GLARE contains 2,157 images of traffic signs with sun glare, pulled from 33 videos of dashcam footage of roads in the United States. It provides an essential enrichment to the widely used LISA Traffic Sign dataset. Our experimental study shows that although several state-of-the-art baseline architectures have demonstrated good performance on traffic sign detection in conditions without sun glare in the past, they performed poorly when tested against GLARE (e.g., average mAP0.5:0.95 of 19.4). We also notice that current architectures have better detection when trained on images of traffic signs in sun glare performance (e.g., average mAP0.5:0.95 of 39.6), and perform best when trained on a mixture of conditions (e.g., average mAP0.5:0.95 of 42.3).
Optimizing Real-Time Performances for Timed-Loop Racing under F1TENTH
Gupta, Nitish, Wilson, Kurt, Guo, Zhishan
Motion planning and control in autonomous car racing are one of the most challenging and safety-critical tasks due to high speed and dynamism. The lower-level control nodes are expected to be highly optimized due to resource constraints of onboard embedded processing units, although there are strict latency requirements. Some of these guarantees can be provided at the application level, such as using ROS2's Real-Time executors. However, the performance can be far from satisfactory as many modern control algorithms (such as Model Predictive Control) rely on solving complicated online optimization problems at each iteration. In this paper, we present a simple yet effective multi-threading technique to optimize the throughput of online-control algorithms for resource-constrained autonomous racing platforms. We achieve this by maintaining a systematic pool of worker threads solving the optimization problem in parallel which can improve the system performance by reducing latency between control input commands. We further demonstrate the effectiveness of our method using the Model Predictive Contouring Control (MPCC) algorithm running on Nvidia's Xavier AGX platform.