Wilson, Kevin H.
Jump Starting Bandits with LLM-Generated Prior Knowledge
Alamdari, Parand A., Cao, Yanshuai, Wilson, Kevin H.
We present substantial evidence demonstrating the benefits of integrating Large Language Models (LLMs) with a Contextual Multi-Armed Bandit framework. Contextual bandits have been widely used in recommendation systems to generate personalized suggestions based on user-specific contexts. We show that LLMs, pre-trained on extensive corpora rich in human knowledge and preferences, can simulate human behaviours well enough to jump-start contextual multi-armed bandits to reduce online learning regret. We propose an initialization algorithm for contextual bandits by prompting LLMs to produce a pre-training dataset of approximate human preferences for the bandit. This significantly reduces online learning regret and data-gathering costs for training such models. Our approach is validated empirically through two sets of experiments with different bandit setups: one which utilizes LLMs to serve as an oracle and a real-world experiment utilizing data from a conjoint survey experiment.
Counterfactual Explanations for Multivariate Time-Series without Training Datasets
Sun, Xiangyu, Aoki, Raquel, Wilson, Kevin H.
Machine learning (ML) methods have experienced significant growth in the past decade, yet their practical application in high-impact real-world domains has been hindered by their opacity. When ML methods are responsible for making critical decisions, stakeholders often require insights into how to alter these decisions. Counterfactual explanations (CFEs) have emerged as a solution, offering interpretations of opaque ML models and providing a pathway to transition from one decision to another. However, most existing CFE methods require access to the model's training dataset, few methods can handle multivariate time-series, and none can handle multivariate time-series without training datasets. These limitations can be formidable in many scenarios. In this paper, we present CFWoT, a novel reinforcement-learning-based CFE method that generates CFEs when training datasets are unavailable. CFWoT is model-agnostic and suitable for both static and multivariate time-series datasets with continuous and discrete features. Users have the flexibility to specify non-actionable, immutable, and preferred features, as well as causal constraints which CFWoT guarantees will be respected. We demonstrate the performance of CFWoT against four baselines on several datasets and find that, despite not having access to a training dataset, CFWoT finds CFEs that make significantly fewer and significantly smaller changes to the input time-series. These properties make CFEs more actionable, as the magnitude of change required to alter an outcome is vastly reduced.