Williams, Adina
AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
Ghosh, Shaona, Frase, Heather, Williams, Adina, Luger, Sarah, Röttger, Paul, Barez, Fazl, McGregor, Sean, Fricklas, Kenneth, Kumar, Mala, Feuillade--Montixi, Quentin, Bollacker, Kurt, Friedrich, Felix, Tsang, Ryan, Vidgen, Bertie, Parrish, Alicia, Knotz, Chris, Presani, Eleonora, Bennion, Jonathan, Boston, Marisa Ferrara, Kuniavsky, Mike, Hutiri, Wiebke, Ezick, James, Salem, Malek Ben, Sahay, Rajat, Goswami, Sujata, Gohar, Usman, Huang, Ben, Sarin, Supheakmungkol, Alhajjar, Elie, Chen, Canyu, Eng, Roman, Manjusha, Kashyap Ramanandula, Mehta, Virendra, Long, Eileen, Emani, Murali, Vidra, Natan, Rukundo, Benjamin, Shahbazi, Abolfazl, Chen, Kongtao, Ghosh, Rajat, Thangarasa, Vithursan, Peigné, Pierre, Singh, Abhinav, Bartolo, Max, Krishna, Satyapriya, Akhtar, Mubashara, Gold, Rafael, Coleman, Cody, Oala, Luis, Tashev, Vassil, Imperial, Joseph Marvin, Russ, Amy, Kunapuli, Sasidhar, Miailhe, Nicolas, Delaunay, Julien, Radharapu, Bhaktipriya, Shinde, Rajat, Tuesday, null, Dutta, Debojyoti, Grabb, Declan, Gangavarapu, Ananya, Sahay, Saurav, Gangavarapu, Agasthya, Schramowski, Patrick, Singam, Stephen, David, Tom, Han, Xudong, Mammen, Priyanka Mary, Prabhakar, Tarunima, Kovatchev, Venelin, Ahmed, Ahmed, Manyeki, Kelvin N., Madireddy, Sandeep, Khomh, Foutse, Zhdanov, Fedor, Baumann, Joachim, Vasan, Nina, Yang, Xianjun, Mougn, Carlos, Varghese, Jibin Rajan, Chinoy, Hussain, Jitendar, Seshakrishna, Maskey, Manil, Hardgrove, Claire V., Li, Tianhao, Gupta, Aakash, Joswin, Emil, Mai, Yifan, Kumar, Shachi H, Patlak, Cigdem, Lu, Kevin, Alessi, Vincent, Balija, Sree Bhargavi, Gu, Chenhe, Sullivan, Robert, Gealy, James, Lavrisa, Matt, Goel, James, Mattson, Peter, Liang, Percy, Vanschoren, Joaquin
The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.
BabyLM Turns 3: Call for papers for the 2025 BabyLM workshop
Charpentier, Lucas, Choshen, Leshem, Cotterell, Ryan, Gul, Mustafa Omer, Hu, Michael, Jumelet, Jaap, Linzen, Tal, Liu, Jing, Mueller, Aaron, Ross, Candace, Shah, Raj Sanjay, Warstadt, Alex, Wilcox, Ethan, Williams, Adina
BabyLM aims to dissolve the boundaries between cognitive modeling and language modeling. We call for both workshop papers and for researchers to join the 3rd BabyLM competition. As in previous years, we call for participants in the data-efficient pretraining challenge in the general track. This year, we also offer a new track: INTERACTION. This new track encourages interactive behavior, learning from a teacher, and adapting the teaching material to the student. We also call for papers outside the competition in any relevant areas. These include training efficiency, cognitively plausible research, weak model evaluation, and more.
Chained Tuning Leads to Biased Forgetting
Ung, Megan, Sun, Alicia, Bell, Samuel J., Radharapu, Bhaktipriya, Sagun, Levent, Williams, Adina
Large language models (LLMs) are often fine-tuned for use on downstream tasks, though this can degrade capabilities learned during previous training. This phenomenon, often referred to as catastrophic forgetting, has important potential implications for the safety of deployed models. In this work, we first show that models trained on downstream tasks forget their safety tuning to a greater extent than models trained in the opposite order. Second, we show that forgetting disproportionately impacts safety information about certain groups. To quantify this phenomenon, we define a new metric we term biased forgetting. We conduct a systematic evaluation of the effects of task ordering on forgetting and apply mitigations that can help the model recover from the forgetting observed. We hope our findings can better inform methods for chaining the finetuning of LLMs in continual learning settings to enable training of safer and less toxic models.
What makes a good metric? Evaluating automatic metrics for text-to-image consistency
Ross, Candace, Hall, Melissa, Soriano, Adriana Romero, Williams, Adina
Language models are increasingly being incorporated as components in larger AI systems for various purposes, from prompt optimization to automatic evaluation. In this work, we analyze the construct validity of four recent, commonly used methods for measuring text-to-image consistency - CLIPScore, TIFA, VPEval, and DSG - which rely on language models and/or VQA models as components. We define construct validity for text-image consistency metrics as a set of desiderata that text-image consistency metrics should have, and find that no tested metric satisfies all of them. We find that metrics lack sufficient sensitivity to language and visual properties. Next, we find that TIFA, VPEval and DSG contribute novel information above and beyond CLIPScore, but also that they correlate highly with each other. We also ablate different aspects of the text-image consistency metrics and find that not all model components are strictly necessary, also a symptom of insufficient sensitivity to visual information. Finally, we show that all three VQA-based metrics likely rely on familiar text shortcuts (such as yes-bias in QA) that call their aptitude as quantitative evaluations of model performance into question.
Transformers Can Navigate Mazes With Multi-Step Prediction
Nolte, Niklas, Kitouni, Ouail, Williams, Adina, Rabbat, Mike, Ibrahim, Mark
Despite their remarkable success in language modeling, transformers trained to predict the next token in a sequence struggle with long-term planning. This limitation is particularly evident in tasks requiring foresight to plan multiple steps ahead such as maze navigation. The standard next single token prediction objective, however, offers no explicit mechanism to predict multiple steps ahead - or revisit the path taken so far. Consequently, in this work we study whether explicitly predicting multiple steps ahead (and backwards) can improve transformers' maze navigation. We train parameter-matched transformers from scratch, under identical settings, to navigate mazes of varying types and sizes with standard next token prediction and MLM-U, an objective explicitly predicting multiple steps ahead and backwards. We find that MLM-U considerably improves transformers' ability to navigate mazes compared to standard next token prediction across maze types and complexities. We also find MLM-U training is 4x more sample efficient and converges 2x faster in terms of GPU training hours relative to next token training. Finally, for more complex mazes we find MLM-U benefits from scaling to larger transformers. Remarkably, we find transformers trained with MLM-U outperform larger transformers trained with next token prediction using additional supervision from A* search traces. We hope these findings underscore the promise of learning objectives to advance transformers' capacity for long-term planning. The code can be found at https://github.com/facebookresearch/maze_navigation_MLMU
Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora
Hu, Michael Y., Mueller, Aaron, Ross, Candace, Williams, Adina, Linzen, Tal, Zhuang, Chengxu, Cotterell, Ryan, Choshen, Leshem, Warstadt, Alex, Wilcox, Ethan Gotlieb
The BabyLM Challenge is a community effort to close the data-efficiency gap between human and computational language learners. Participants compete to optimize language model training on a fixed language data budget of 100 million words or less. This year, we released improved text corpora, as well as a vision-and-language corpus to facilitate research into cognitively plausible vision language models. Submissions were compared on evaluation tasks targeting grammatical ability, (visual) question answering, pragmatic abilities, and grounding, among other abilities. Participants could submit to a 10M-word text-only track, a 100M-word text-only track, and/or a 100M-word and image multimodal track. From 31 submissions employing diverse methods, a hybrid causal-masked language model architecture outperformed other approaches. No submissions outperformed the baselines in the multimodal track. In follow-up analyses, we found a strong relationship between training FLOPs and average performance across tasks, and that the best-performing submissions proposed changes to the training data, training objective, and model architecture. This year's BabyLM Challenge shows that there is still significant room for innovation in this setting, in particular for image-text modeling, but community-driven research can yield actionable insights about effective strategies for small-scale language modeling.
The PRISM Alignment Dataset: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models
Kirk, Hannah Rose, Whitefield, Alexander, Röttger, Paul, Bean, Andrew, Margatina, Katerina, Ciro, Juan, Mosquera, Rafael, Bartolo, Max, Williams, Adina, He, He, Vidgen, Bertie, Hale, Scott A.
Human feedback is central to the alignment of Large Language Models (LLMs). However, open questions remain about methods (how), domains (where), people (who) and objectives (to what end) of feedback processes. To navigate these questions, we introduce PRISM, a dataset that maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. With PRISM, we contribute (i) wider geographic and demographic participation in feedback; (ii) census-representative samples for two countries (UK, US); and (iii) individualised ratings that link to detailed participant profiles, permitting personalisation and attribution of sample artefacts. We target subjective and multicultural perspectives on value-laden and controversial issues, where we expect interpersonal and cross-cultural disagreement. We use PRISM in three case studies to demonstrate the need for careful consideration of which humans provide what alignment data.
On the Role of Speech Data in Reducing Toxicity Detection Bias
Bell, Samuel J., Meglioli, Mariano Coria, Richards, Megan, Sánchez, Eduardo, Ropers, Christophe, Wang, Skyler, Williams, Adina, Sagun, Levent, Costa-jussà, Marta R.
Text toxicity detection systems exhibit significant biases, producing disproportionate rates of false positives on samples mentioning demographic groups. But what about toxicity detection in speech? To investigate the extent to which text-based biases are mitigated by speech-based systems, we produce a set of high-quality group annotations for the multilingual MuTox dataset, and then leverage these annotations to systematically compare speech- and text-based toxicity classifiers. Our findings indicate that access to speech data during inference supports reduced bias against group mentions, particularly for ambiguous and disagreement-inducing samples. Our results also suggest that improving classifiers, rather than transcription pipelines, is more helpful for reducing group bias. We publicly release our annotations and provide recommendations for future toxicity dataset construction.
The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models
Ovalle, Anaelia, Pavasovic, Krunoslav Lehman, Martin, Louis, Zettlemoyer, Luke, Smith, Eric Michael, Williams, Adina, Sagun, Levent
Content Warning: This paper contains examples of offensive transphobic content. Natural-language assistants are designed to provide users with helpful responses while avoiding harmful outputs, largely achieved through alignment to human preferences. Yet there is limited understanding of whether alignment techniques may inadvertently perpetuate or even amplify harmful biases inherited from their pre-aligned base models. This issue is compounded by the choice of bias evaluation benchmarks in popular preference-finetuned models, which predominantly focus on dominant social categories, such as binary gender, thereby limiting insights into biases affecting underrepresented groups. Towards addressing this gap, we center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias in LLMs. Our key contributions include: 1) a comprehensive survey of bias evaluation modalities across leading preference-finetuned LLMs, highlighting critical gaps in genderdiverse representation, 2) systematic evaluation of gender-diverse biases across 12 models spanning Direct Preference Optimization (DPO) stages, uncovering harms popular bias benchmarks fail to detect, and 3) a flexible framework for measuring harmful biases in implicit reward signals applicable to other social contexts. Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning (SFT), and can amplify two forms of real-world gender-diverse harms from their base models: stigmatization and gender non-affirmative language. We conclude with recommendations tailored to DPO and broader alignment practices, advocating for the adoption of community-informed bias evaluation frameworks to more effectively identify and address underrepresented harms in LLMs.
Improving Model Evaluation using SMART Filtering of Benchmark Datasets
Gupta, Vipul, Ross, Candace, Pantoja, David, Passonneau, Rebecca J., Ung, Megan, Williams, Adina
One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.