Willard, Frank
This Looks Better than That: Better Interpretable Models with ProtoPNeXt
Willard, Frank, Moffett, Luke, Mokel, Emmanuel, Donnelly, Jon, Guo, Stark, Yang, Julia, Kim, Giyoung, Barnett, Alina Jade, Rudin, Cynthia
Prototypical-part models are a popular interpretable alternative to black-box deep learning models for computer vision. However, they are difficult to train, with high sensitivity to hyperparameter tuning, inhibiting their application to new datasets and our understanding of which methods truly improve their performance. To facilitate the careful study of prototypical-part networks (ProtoPNets), we create a new framework for integrating components of prototypical-part models -- ProtoPNeXt. Using ProtoPNeXt, we show that applying Bayesian hyperparameter tuning and an angular prototype similarity metric to the original ProtoPNet is sufficient to produce new state-of-the-art accuracy for prototypical-part models on CUB-200 across multiple backbones. We further deploy this framework to jointly optimize for accuracy and prototype interpretability as measured by metrics included in ProtoPNeXt. Using the same resources, this produces models with substantially superior semantics and changes in accuracy between +1.3% and -1.5%. The code and trained models will be made publicly available upon publication.
ProtoEEGNet: An Interpretable Approach for Detecting Interictal Epileptiform Discharges
Tang, Dennis, Willard, Frank, Tegerdine, Ronan, Triplett, Luke, Donnelly, Jon, Moffett, Luke, Semenova, Lesia, Barnett, Alina Jade, Jing, Jin, Rudin, Cynthia, Westover, Brandon
In electroencephalogram (EEG) recordings, the presence of interictal epileptiform discharges (IEDs) serves as a critical biomarker for seizures or seizure-like events.Detecting IEDs can be difficult; even highly trained experts disagree on the same sample. As a result, specialists have turned to machine-learning models for assistance. However, many existing models are black boxes and do not provide any human-interpretable reasoning for their decisions. In high-stakes medical applications, it is critical to have interpretable models so that experts can validate the reasoning of the model before making important diagnoses. We introduce ProtoEEGNet, a model that achieves state-of-the-art accuracy for IED detection while additionally providing an interpretable justification for its classifications. Specifically, it can reason that one EEG looks similar to another ''prototypical'' EEG that is known to contain an IED. ProtoEEGNet can therefore help medical professionals effectively detect IEDs while maintaining a transparent decision-making process.