Will Hamilton
Hierarchical Graph Representation Learning with Differentiable Pooling
Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, Jure Leskovec
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs--a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph.
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K. Duvenaud, Raquel Urtasun, Richard Zemel
We propose a new family of efficient and expressive deep generative models of graphs, called Graph Recurrent Attention Networks (GRANs). Our model generates graphs one block of nodes and associated edges at a time. The block size and sampling stride allow us to trade off sample quality for efficiency. Compared to previous RNN-based graph generative models, our framework better captures the auto-regressive conditioning between the already-generated and to-be-generated parts of the graph using Graph Neural Networks (GNNs) with attention. This not only reduces the dependency on node ordering but also bypasses the long-term bottleneck caused by the sequential nature of RNNs. Moreover, we parameterize the output distribution per block using a mixture of Bernoulli, which captures the correlations among generated edges within the block.
Embedding Logical Queries on Knowledge Graphs
Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, Jure Leskovec
Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict what drugs are likely to target proteins involved with both diseases X and Y?--a query that requires reasoning about all possible proteins that might interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries--a flexible but tractable subset of first-order logic--on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. By performing logical operations within a low-dimensional embedding space, our approach achieves a time complexity that is linear in the number of query variables, compared to the exponential complexity required by a naive enumeration-based approach. We demonstrate the utility of this framework in two application studies on real-world datasets with millions of relations: predicting logical relationships in a network of drug-gene-disease interactions and in a graph-based representation of social interactions derived from a popular web forum.
Hierarchical Graph Representation Learning with Differentiable Pooling
Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, Jure Leskovec
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs--a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph.
Inductive Representation Learning on Large Graphs
Will Hamilton, Zhitao Ying, Jure Leskovec
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.