Goto

Collaborating Authors

 Wilcox, Ethan Gotlieb


Looking forward: Linguistic theory and methods

arXiv.org Artificial Intelligence

William Labov's festschrift is titled Towards a Social Science of Language (Guy et al. 1996), while Noam Chomsky's book of interviews is The Science of Language (Chomsky 2012) . Linguistics has long been preening itself for scientific status, and in this chapter we examine some ways the field continues to pursue a scientific understanding of humanity's most enigmatic gift. As we will show below, the use of computational methods and large datasets are currently driving advances in linguistics, providing more accurate (or at least reproducible) evidence on our major theoretical questions. Much of the credit for progress lies with increasing connections to other disciplines. We here advocate for a linguistics that is richly connected with computer science, psychology, neuroscience and biology.


Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora

arXiv.org Artificial Intelligence

The BabyLM Challenge is a community effort to close the data-efficiency gap between human and computational language learners. Participants compete to optimize language model training on a fixed language data budget of 100 million words or less. This year, we released improved text corpora, as well as a vision-and-language corpus to facilitate research into cognitively plausible vision language models. Submissions were compared on evaluation tasks targeting grammatical ability, (visual) question answering, pragmatic abilities, and grounding, among other abilities. Participants could submit to a 10M-word text-only track, a 100M-word text-only track, and/or a 100M-word and image multimodal track. From 31 submissions employing diverse methods, a hybrid causal-masked language model architecture outperformed other approaches. No submissions outperformed the baselines in the multimodal track. In follow-up analyses, we found a strong relationship between training FLOPs and average performance across tasks, and that the best-performing submissions proposed changes to the training data, training objective, and model architecture. This year's BabyLM Challenge shows that there is still significant room for innovation in this setting, in particular for image-text modeling, but community-driven research can yield actionable insights about effective strategies for small-scale language modeling.


Reverse-Engineering the Reader

arXiv.org Artificial Intelligence

Numerous previous studies have sought to determine to what extent language models, pretrained on natural language text, can serve as useful models of human cognition. In this paper, we are interested in the opposite question: whether we can directly optimize a language model to be a useful cognitive model by aligning it to human psychometric data. To achieve this, we introduce a novel alignment technique in which we fine-tune a language model to implicitly optimize the parameters of a linear regressor that directly predicts humans' reading times of in-context linguistic units, e.g., phonemes, morphemes, or words, using surprisal estimates derived from the language model. Using words as a test case, we evaluate our technique across multiple model sizes and datasets and find that it improves language models' psychometric predictive power. However, we find an inverse relationship between psychometric power and a model's performance on downstream NLP tasks as well as its perplexity on held-out test data. While this latter trend has been observed before (Oh et al., 2022; Shain et al., 2024), we are the first to induce it by manipulating a model's alignment to psychometric data.


Revisiting the Optimality of Word Lengths

arXiv.org Artificial Intelligence

Zipf (1935) posited that wordforms are optimized to minimize utterances' communicative costs. Under the assumption that cost is given by an utterance's length, he supported this claim by showing that words' lengths are inversely correlated with their frequencies. Communicative cost, however, can be operationalized in different ways. Piantadosi et al. (2011) claim that cost should be measured as the distance between an utterance's information rate and channel capacity, which we dub the channel capacity hypothesis (CCH) here. Following this logic, they then proposed that a word's length should be proportional to the expected value of its surprisal (negative log-probability in context). In this work, we show that Piantadosi et al.'s derivation does not minimize CCH's cost, but rather a lower bound, which we term CCH-lower. We propose a novel derivation, suggesting an improved way to minimize CCH's cost. Under this method, we find that a language's word lengths should instead be proportional to the surprisal's expectation plus its variance-to-mean ratio. Experimentally, we compare these three communicative cost functions: Zipf's, CCH-lower , and CCH. Across 13 languages and several experimental settings, we find that length is better predicted by frequency than either of the other hypotheses. In fact, when surprisal's expectation, or expectation plus variance-to-mean ratio, is estimated using better language models, it leads to worse word length predictions. We take these results as evidence that Zipf's longstanding hypothesis holds.


Testing the Predictions of Surprisal Theory in 11 Languages

arXiv.org Artificial Intelligence

A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.