Wilber, Michael J.
Residual Networks Behave Like Ensembles of Relatively Shallow Networks
Veit, Andreas, Wilber, Michael J., Belongie, Serge
In this work we propose a novel interpretation of residual networks showing that they can be seen as a collection of many paths of differing length. Moreover, residual networks seem to enable very deep networks by leveraging only the short paths during training. To support this observation, we rewrite residual networks as an explicit collection of paths. Unlike traditional models, paths through residual networks vary in length. Further, a lesion study reveals that these paths show ensemble-like behavior in the sense that they do not strongly depend on each other. Finally, and most surprising, most paths are shorter than one might expect, and only the short paths are needed during training, as longer paths do not contribute any gradient. For example, most of the gradient in a residual network with 110 layers comes from paths that are only 10-34 layers deep. Our results reveal one of the key characteristics that seem to enable the training of very deep networks: Residual networks avoid the vanishing gradient problem by introducing short paths which can carry gradient throughout the extent of very deep networks.
Cost-Effective HITs for Relative Similarity Comparisons
Wilber, Michael J. (Cornell University) | Kwak, Iljung S. (University of California, San Diego) | Belongie, Serge J. (Cornell University)
Similarity comparisons of the form "Is object a more similar to b than to c?" form a useful foundation in several computer vision and machine learning applications. Unfortunately, an embedding of n points is only uniquely specified by n 3 triplets, making collecting every triplet an expensive task. In noticing this difficulty, other researchers investigated more intelligent triplet sampling techniques, but they do not study their effectiveness or their potential drawbacks. Although it is important to reduce the number of collected triplets to generate a good embedding, it is also important to understand how best to display a triplet collection task to the user to better respect the worker's human constraints. In this work, we explore an alternative method for collecting triplets and analyze its financial cost, collection speed, and worker happiness as a function of the final embedding quality. We propose best practices for creating cost effective human intelligence tasks for collecting triplets. We show that rather than changing the sampling algorithm, simple changes to the crowdsourcing UI can drastically decrease the cost of collecting similarity comparisons. Finally, we provide a food similarity dataset as well as the labels collected from crowd workers.