Wickstrøm, Kristoffer K.
REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability
Wickstrøm, Kristoffer K., Brüsch, Thea, Kampffmeyer, Michael C., Jenssen, Robert
Incorporating uncertainty is crucial to provide trustworthy explanations of deep learning models. Recent works have demonstrated how uncertainty modeling can be particularly important in the unsupervised field of representation learning explainable artificial intelligence (R-XAI). Current R-XAI methods provide uncertainty by measuring variability in the importance score. However, they fail to provide meaningful estimates of whether a pixel is certainly important or not. In this work, we propose a new R-XAI method called REPEAT that addresses the key question of whether or not a pixel is \textit{certainly} important. REPEAT leverages the stochasticity of current R-XAI methods to produce multiple estimates of importance, thus considering each pixel in an image as a Bernoulli random variable that is either important or unimportant. From these Bernoulli random variables we can directly estimate the importance of a pixel and its associated certainty, thus enabling users to determine certainty in pixel importance. Our extensive evaluation shows that REPEAT gives certainty estimates that are more intuitive, better at detecting out-of-distribution data, and more concise.
FLEXtime: Filterbank learning for explaining time series
Brüsch, Thea, Wickstrøm, Kristoffer K., Schmidt, Mikkel N., Jenssen, Robert, Alstrøm, Tommy S.
State-of-the-art methods for explaining predictions based on time series are built on learning an instance-wise saliency mask for each time step. However, for many types of time series, the salient information is found in the frequency domain. Adopting existing methods to the frequency domain involves naively zeroing out frequency content in the signals, which goes against established signal processing theory. Therefore, we propose a new method entitled FLEXtime, that uses a filterbank to split the time series into frequency bands and learns the optimal combinations of these bands. FLEXtime avoids the drawbacks of zeroing out frequency bins and is more stable and easier to train compared to the naive method. Our extensive evaluation shows that FLEXtime on average outperforms state-of-the-art explainability methods across a range of datasets. FLEXtime fills an important gap in the time series explainability literature and can provide a valuable tool for a wide range of time series like EEG and audio.
Explaining time series models using frequency masking
Brüsch, Thea, Wickstrøm, Kristoffer K., Schmidt, Mikkel N., Alstrøm, Tommy S., Jenssen, Robert
Time series data is fundamentally important for describing many critical domains such as healthcare, finance, and climate, where explainable models are necessary for safe automated decision-making. To develop eXplainable AI (XAI) in these domains therefore implies explaining salient information in the time series. Current methods for obtaining saliency maps assumes localized information in the raw input space. In this paper, we argue that the salient information of a number of time series is more likely to be localized in the frequency domain. We propose FreqRISE, which uses masking based methods to produce explanations in the frequency and time-frequency domain, which shows the best performance across a number of tasks.
View it like a radiologist: Shifted windows for deep learning augmentation of CT images
Østmo, Eirik A., Wickstrøm, Kristoffer K., Radiya, Keyur, Kampffmeyer, Michael C., Jenssen, Robert
Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Hedström, Anna, Bommer, Philine, Wickstrøm, Kristoffer K., Samek, Wojciech, Lapuschkin, Sebastian, Höhne, Marina M. -C.
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method in the absence of ground truth explanation labels. Resolving this issue is of utmost importance as the evaluation outcomes generated by competing evaluation methods (or ''quality estimators''), which aim at measuring the same property of an explanation method, frequently present conflicting rankings. Such disagreements can be challenging for practitioners to interpret, thereby complicating their ability to select the best-performing explanation method. We address this problem through a meta-evaluation of different quality estimators in XAI, which we define as ''the process of evaluating the evaluation method''. Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator: its resilience to noise and reactivity to randomness, thus circumventing the need for ground truth labels. We demonstrate the effectiveness of our framework through a series of experiments, targeting various open questions in XAI such as the selection and hyperparameter optimisation of quality estimators. Our work is released under an open-source license (https://github.com/annahedstroem/MetaQuantus) to serve as a development tool for XAI- and Machine Learning (ML) practitioners to verify and benchmark newly constructed quality estimators in a given explainability context. With this work, we provide the community with clear and theoretically-grounded guidance for identifying reliable evaluation methods, thus facilitating reproducibility in the field.
RELAX: Representation Learning Explainability
Wickstrøm, Kristoffer K., Trosten, Daniel J., Løkse, Sigurd, Mikalsen, Karl Øyvind, Kampffmeyer, Michael C., Jenssen, Robert
Despite the significant improvements that representation learning via self-supervision has led to when learning from unlabeled data, no methods exist that explain what influences the learned representation. We address this need through our proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself, providing intuitive explanations and significantly outperforming the gradient-based baseline. We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning, providing insights into different learning strategies. Finally, we illustrate the usability of RELAX in multi-view clustering and highlight that incorporating uncertainty can be essential for providing low-complexity explanations, taking a crucial step towards explaining representations.