Wick, Michael
Conjugate Energy-Based Models
Wu, Hao, Esmaeili, Babak, Wick, Michael, Tristan, Jean-Baptiste, van de Meent, Jan-Willem
In this paper, we propose conjugate energy-based models (CEBMs), a new class of energy-based models that define a joint density over data and latent variables. The joint density of a CEBM decomposes into an intractable distribution over data and a tractable posterior over latent variables. CEBMs have similar use cases as variational autoencoders, in the sense that they learn an unsupervised mapping from data to latent variables. However, these models omit a generator network, which allows them to learn more flexible notions of similarity between data points. Our experiments demonstrate that conjugate EBMs achieve competitive results in terms of image modelling, predictive power of latent space, and out-of-domain detection on a variety of datasets.
Unlocking Fairness: a Trade-off Revisited
Wick, Michael, panda, swetasudha, Tristan, Jean-Baptiste
The prevailing wisdom is that a model's fairness and its accuracy are in tension with one another. However, there is a pernicious {\em modeling-evaluating dualism} bedeviling fair machine learning in which phenomena such as label bias are appropriately acknowledged as a source of unfairness when designing fair models, only to be tacitly abandoned when evaluating them. We investigate fairness and accuracy, but this time under a variety of controlled conditions in which we vary the amount and type of bias. We find, under reasonable assumptions, that the tension between fairness and accuracy is illusive, and vanishes as soon as we account for these phenomena during evaluation. Moreover, our results are consistent with an opposing conclusion: fairness and accuracy are sometimes in accord.
Sketching for Latent Dirichlet-Categorical Models
Tassarotti, Joseph, Tristan, Jean-Baptiste, Wick, Michael
Recent work has explored transforming data sets into smaller, approximate summaries in order to scale Bayesian inference. We examine a related problem in which the parameters of a Bayesian model are very large and expensive to store in memory, and propose more compact representations of parameter values that can be used during inference. We focus on a class of graphical models that we refer to as latent Dirichlet-Categorical models, and show how a combination of two sketching algorithms known as count-min sketch and approximate counters provide an efficient representation for them. We show that this sketch combination -- which, despite having been used before in NLP applications, has not been previously analyzed -- enjoys desirable properties. We prove that for this class of models, when the sketches are used during Markov Chain Monte Carlo inference, the equilibrium of sketched MCMC converges to that of the exact chain as sketch parameters are tuned to reduce the error rate.
Minimally-Constrained Multilingual Embeddings via Artificial Code-Switching
Wick, Michael (Oracle Labs) | Kanani, Pallika (Oracle Labs) | Pocock, Adam (Oracle Labs)
We present a method that consumes a large corpus of multilingual text and produces a single, unified word embedding in which the word vectors generalize across languages. In contrast to current approaches that require language identification, our method is agnostic about the languages with which the documents in the corpus are expressed, and does not rely on parallel corpora to constrain the spaces. Instead we utilize a small set of human provided word translations---which are often freely and readily available. We can encode such word translations as hard constraints in the model's objective functions; however, we find that we can more naturally constrain the space by allowing words in one language to borrow distributional statistics from context words in another language. We achieve this via a process we term artificial code-switching. As the name suggests, we induce code-switching so that words across multiple languages appear in contexts together. Not only do embedding models trained on code-switched data learn common cross-lingual structure, the common structure allows an NLP model trained in a source language to generalize to multiple target languages (achieving up to 80% of the accuracy of models trained with target-language data).
Distantly Labeling Data for Large Scale Cross-Document Coreference
Singh, Sameer, Wick, Michael, McCallum, Andrew
Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.
Scalable Probabilistic Databases with Factor Graphs and MCMC
Wick, Michael, McCallum, Andrew, Miklau, Gerome
Probabilistic databases play a crucial role in the management and understanding of uncertain data. However, incorporating probabilities into the semantics of incomplete databases has posed many challenges, forcing systems to sacrifice modeling power, scalability, or restrict the class of relational algebra formula under which they are closed. We propose an alternative approach where the underlying relational database always represents a single world, and an external factor graph encodes a distribution over possible worlds; Markov chain Monte Carlo (MCMC) inference is then used to recover this uncertainty to a desired level of fidelity. Our approach allows the efficient evaluation of arbitrary queries over probabilistic databases with arbitrary dependencies expressed by graphical models with structure that changes during inference. MCMC sampling provides efficiency by hypothesizing {\em modifications} to possible worlds rather than generating entire worlds from scratch. Queries are then run over the portions of the world that change, avoiding the onerous cost of running full queries over each sampled world. A significant innovation of this work is the connection between MCMC sampling and materialized view maintenance techniques: we find empirically that using view maintenance techniques is several orders of magnitude faster than naively querying each sampled world. We also demonstrate our system's ability to answer relational queries with aggregation, and demonstrate additional scalability through the use of parallelization.