Whittaker, Warren
SubT-MRS Dataset: Pushing SLAM Towards All-weather Environments
Zhao, Shibo, Gao, Yuanjun, Wu, Tianhao, Singh, Damanpreet, Jiang, Rushan, Sun, Haoxiang, Sarawata, Mansi, Qiu, Yuheng, Whittaker, Warren, Higgins, Ian, Du, Yi, Su, Shaoshu, Xu, Can, Keller, John, Karhade, Jay, Nogueira, Lucas, Saha, Sourojit, Zhang, Ji, Wang, Wenshan, Wang, Chen, Scherer, Sebastian
Simultaneous localization and mapping (SLAM) is a fundamental task for numerous applications such as autonomous navigation and exploration. Despite many SLAM datasets have been released, current SLAM solutions still struggle to have sustained and resilient performance. One major issue is the absence of high-quality datasets including diverse all-weather conditions and a reliable metric for assessing robustness. This limitation significantly restricts the scalability and generalizability of SLAM technologies, impacting their development, validation, and deployment. To address this problem, we present SubT-MRS, an extremely challenging real-world dataset designed to push SLAM towards all-weather environments to pursue the most robust SLAM performance. It contains multi-degraded environments including over 30 diverse scenes such as structureless corridors, varying lighting conditions, and perceptual obscurants like smoke and dust; multimodal sensors such as LiDAR, fisheye camera, IMU, and thermal camera; and multiple locomotions like aerial, legged, and wheeled robots. We develop accuracy and robustness evaluation tracks for SLAM and introduced novel robustness metrics. Comprehensive studies are performed, revealing new observations, challenges, and opportunities for future research.
A Robot for Nondestructive Assay of Holdup Deposits in Gaseous Diffusion Piping
Jones, Heather, Maley, Siri, Mousaei, Mohammadreza, Kohanbash, David, Whittaker, Warren, Teza, James, Zhang, Andrew, Jog, Nikhil, Whittaker, William
Miles of contaminated pipe must be measured, foot by foot, as part of the decommissioning effort at deactivated gaseous diffusion enrichment facilities. The current method requires cutting away asbestos-lined thermal enclosures and performing repeated, elevated operations to manually measure pipe from the outside. The RadPiper robot, part of the Pipe Crawling Activity Measurement System (PCAMS) developed by Carnegie Mellon University and commissioned for use at the DOE Portsmouth Gaseous Diffusion Enrichment Facility, automatically measures U-235 in pipes from the inside. This improves certainty, increases safety, and greatly reduces measurement time. The heart of the RadPiper robot is a sodium iodide scintillation detector in an innovative disc-collimated assembly. By measuring from inside pipes, the robot significantly increases its count rate relative to external through-pipe measurements. The robot also provides imagery, models interior pipe geometry, and precisely measures distance in order to localize radiation measurements. Data collected by this system provides insight into pipe interiors that is simply not possible from exterior measurements, all while keeping operators safer. This paper describes the technical details of the PCAMS RadPiper robot. Key features for this robot include precision distance measurement, in-pipe obstacle detection, ability to transform for two pipe sizes, and robustness in autonomous operation. Test results demonstrating the robot's functionality are presented, including deployment tolerance tests, safeguarding tests, and localization tests. Integrated robot tests are also shown.