Goto

Collaborating Authors

 White, Lyndon


WEmbSim: A Simple yet Effective Metric for Image Captioning

arXiv.org Artificial Intelligence

The area of automatic image caption evaluation is still undergoing intensive research to address the needs of generating captions which can meet adequacy and fluency requirements. Based on our past attempts at developing highly sophisticated learning-based metrics, we have discovered that a simple cosine similarity measure using the Mean of Word Embeddings(MOWE) of captions can actually achieve a surprisingly high performance on unsupervised caption evaluation. This inspires our proposed work on an effective metric WEmbSim, which beats complex measures such as SPICE, CIDEr and WMD at system-level correlation with human judgments. Moreover, it also achieves the best accuracy at matching human consensus scores for caption pairs, against commonly used unsupervised methods. Therefore, we believe that WEmbSim sets a new baseline for any complex metric to be justified.


LCEval: Learned Composite Metric for Caption Evaluation

arXiv.org Artificial Intelligence

Automatic evaluation metrics hold a fundamental importance in the development and fine-grained analysis of captioning systems. While current evaluation metrics tend to achieve an acceptable correlation with human judgements at the system level, they fail to do so at the caption level. In this work, we propose a neural network-based learned metric to improve the caption-level caption evaluation. To get a deeper insight into the parameters which impact a learned metrics performance, this paper investigates the relationship between different linguistic features and the caption-level correlation of the learned metrics. We also compare metrics trained with different training examples to measure the variations in their evaluation. Moreover, we perform a robustness analysis, which highlights the sensitivity of learned and handcrafted metrics to various sentence perturbations. Our empirical analysis shows that our proposed metric not only outperforms the existing metrics in terms of caption-level correlation but it also shows a strong system-level correlation against human assessments.


DiffEqFlux.jl - A Julia Library for Neural Differential Equations

arXiv.org Machine Learning

DiffEqFlux.jl is a library for fusing neural networks and differential equations. In this work we describe differential equations from the viewpoint of data science and discuss the complementary nature between machine learning models and differential equations. We demonstrate the ability to incorporate DifferentialEquations.jl-defined differential equation problems into a Flux-defined neural network, and vice versa. The advantages of being able to use the entire DifferentialEquations.jl suite for this purpose is demonstrated by counter examples where simple integration strategies fail, but the sophisticated integration strategies provided by the DifferentialEquations.jl library succeed. This is followed by a demonstration of delay differential equations and stochastic differential equations inside of neural networks. We show high-level functionality for defining neural ordinary differential equations (neural networks embedded into the differential equation) and describe the extra models in the Flux model zoo which includes neural stochastic differential equations. We conclude by discussing the various adjoint methods used for backpropogation of the differential equation solvers. DiffEqFlux.jl is an important contribution to the area, as it allows the full weight of the differential equation solvers developed from decades of research in the scientific computing field to be readily applied to the challenges posed by machine learning and data science.