Goto

Collaborating Authors

 White, Jerome


Maintaining User Trust Through Multistage Uncertainty Aware Inference

arXiv.org Artificial Intelligence

This paper describes and evaluates a multistage approach to AI deployment. Each stage involves a more accurate method of inference, yet engaging each comes with an increasing cost. In outlining the architecture, we present a method for quantifying model uncertainty that facilitates confident deferral decisions. The architecture is currently under active deployment to thousands of cotton farmers across India. The broader idea however is applicable to a growing sector of AI deployments in challenging low resources settings.


A Case for Rejection in Low Resource ML Deployment

arXiv.org Artificial Intelligence

Building reliable AI decision support systems requires a robust set of data on which to train models; both with respect to quantity and diversity. Obtaining such datasets can be difficult in resource limited settings, or for applications in early stages of deployment. Sample rejection is one way to work around this challenge, however much of the existing work in this area is ill-suited for such scenarios. This paper substantiates that position and proposes a simple solution as a proof of concept baseline.