Goto

Collaborating Authors

 Whitbrook, Amanda


Artificial Immune Systems (2010)

arXiv.org Artificial Intelligence

The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm.


Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems

arXiv.org Artificial Intelligence

Artificial Immune Systems have been successfully applied to a number of problem domains including fault tolerance and data mining, but have been shown to scale poorly when applied to computer intrusion detec- tion despite the fact that the biological immune system is a very effective anomaly detector. This may be because AIS algorithms have previously been based on the adaptive immune system and biologically-naive mod- els. This paper focuses on describing and testing a more complex and biologically-authentic AIS model, inspired by the interactions between the innate and adaptive immune systems. Its performance on a realistic process anomaly detection problem is shown to be better than standard AIS methods (negative-selection), policy-based anomaly detection methods (systrace), and an alternative innate AIS approach (the DCA). In addition, it is shown that runtime information can be used in combination with system call information to enhance detection capability.


Two-Timescale Learning Using Idiotypic Behaviour Mediation For A Navigating Mobile Robot

arXiv.org Artificial Intelligence

A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile-robot navigation problems is presented and tested in both the real and virtual domains. The LTL phase consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours, encoded as variable sets of attributes, and the STL phase is an idiotypic Artificial Immune System. Results from the LTL phase show that sets of behaviours develop very rapidly, and significantly greater diversity is obtained when multiple autonomous populations are used, rather than a single one. The architecture is assessed under various scenarios, including removal of the LTL phase and switching off the idiotypic mechanism in the STL phase. The comparisons provide substantial evidence that the best option is the inclusion of both the LTL phase and the idiotypic system. In addition, this paper shows that structurally different environments can be used for the two phases without compromising transferability.


Mimicking the Behaviour of Idiotypic AIS Robot Controllers Using Probabilistic Systems

arXiv.org Artificial Intelligence

Previous work has shown that robot navigation systems that employ an architecture based upon the idiotypic network theory of the immune system have an advantage over control techniques that rely on reinforcement learning only. This is thought to be a result of intelligent behaviour selection on the part of the idiotypic robot. In this paper an attempt is made to imitate idiotypic dynamics by creating controllers that use reinforcement with a number of different probabilistic schemes to select robot behaviour. The aims are to show that the idiotypic system is not merely performing some kind of periodic random behaviour selection, and to try to gain further insight into the processes that govern the idiotypic mechanism. Trials are carried out using simulated Pioneer robots that undertake navigation exercises. Results show that a scheme that boosts the probability of selecting highly-ranked alternative behaviours to 50% during stall conditions comes closest to achieving the properties of the idiotypic system, but remains unable to match it in terms of all round performance.


An Idiotypic Immune Network as a Short Term Learning Architecture for Mobile Robots

arXiv.org Artificial Intelligence

A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability


Idiotypic Immune Networks in Mobile Robot Control

arXiv.org Artificial Intelligence

Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (ais) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic ais network with a Reinforcement Learning based control system (rl) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic rl, a simplified hybrid ais-rl that implements idiotypic selection independently of derived concentration levels and a full hybrid ais-rl scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.