Whang, Taesun
CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model
Go, Dongyoung, Whang, Taesun, Lee, Chanhee, Kim, Hwa-Yeon, Park, Sunghoon, Ji, Seunghwan, Kim, Jinho, Kim, Dongchan, Kim, Young-Bum
The integration of Retrieval-Augmented Generation (RAG) with Multimodal Large Language Models (MLLMs) has revolutionized information retrieval and expanded the practical applications of AI. However, current systems struggle in accurately interpreting user intent, employing diverse retrieval strategies, and effectively filtering unintended or inappropriate responses, limiting their effectiveness. This paper introduces Contextual Understanding and Enhanced Search with MLLM (CUE-M), a novel multimodal search framework that addresses these challenges through a multi-stage pipeline comprising image context enrichment, intent refinement, contextual query generation, external API integration, and relevance-based filtering. CUE-M incorporates a robust filtering pipeline combining image-based, text-based, and multimodal classifiers, dynamically adapting to instance- and category-specific concern defined by organizational policies. Evaluations on a multimodal Q&A dataset and a public safety benchmark demonstrate that CUE-M outperforms baselines in accuracy, knowledge integration, and safety, advancing the capabilities of multimodal retrieval systems.
Towards Reliable and Fluent Large Language Models: Incorporating Feedback Learning Loops in QA Systems
Lee, Dongyub, Whang, Taesun, Lee, Chanhee, Lim, Heuiseok
Large language models (LLMs) have emerged as versatile tools in various daily applications. However, they are fraught with issues that undermine their utility and trustworthiness. These include the incorporation of erroneous references (citation), the generation of hallucinated information (correctness), and the inclusion of superfluous or omission of crucial details (fluency). To ameliorate these concerns, this study makes several key contributions. First, we build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by LLMs in QA systems. Second, we propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text. Third, we introduce a feedback learning loop that uses this critic model to iteratively improve the performance of the LLM responsible for response generation. Experimental results demonstrate the efficacy of our approach, showing substantial improvements in citation and fluency metrics for ChatGPT, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency, while maintaining high levels of correctness.
Deep Context- and Relation-Aware Learning for Aspect-based Sentiment Analysis
Oh, Shinhyeok, Lee, Dongyub, Whang, Taesun, Park, IlNam, Seo, Gaeun, Kim, EungGyun, Kim, Harksoo
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
Multi-View Attention Network for Visual Dialog
Park, Sungjin, Whang, Taesun, Yoon, Yeochan, Lim, Heuiseok
Visual dialog is a challenging vision-language task in which a series of questions visually grounded by a given image are answered. To resolve the visual dialog task, a high-level understanding of various multimodal inputs (e.g., question, dialog history, and image) is required. Specifically, it is necessary for an agent to 1) determine the semantic intent of question and 2) align question-relevant textual and visual contents among heterogeneous modality inputs. In this paper, we propose Multi-View Attention Network (MVAN), which leverages multiple views about heterogeneous inputs based on attention mechanisms. MVAN effectively captures the question-relevant information from the dialog history with two complementary modules (i.e., Topic Aggregation and Context Matching), and builds multimodal representations through sequential alignment processes (i.e., Modality Alignment). Experimental results on VisDial v1.0 dataset show the effectiveness of our proposed model, which outperforms the previous state-of-the-art methods with respect to all evaluation metrics.
Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection
Whang, Taesun, Lee, Dongyub, Oh, Dongsuk, Lee, Chanhee, Han, Kijong, Lee, Dong-hun, Lee, Saebyeok
In this paper, we study the task of selecting optimal response given user and system utterance history in retrieval-based multi-turn dialog systems. Recently, pre-trained language models (e.g., BERT, RoBERTa, and ELECTRA) have shown significant improvements in various natural language processing tasks. This and similar response selection tasks can also be solved using such language models by formulating them as dialog-response binary classification tasks. Although existing works using this approach successfully obtained state-of-the-art results, we observe that language models trained in this manner tend to make predictions based on the relatedness of history and candidates, ignoring the sequential nature of multi-turn dialog systems. This suggests that the response selection task alone is insufficient in learning temporal dependencies between utterances. To this end, we propose utterance manipulation strategies (UMS) to address this problem. Specifically, UMS consist of several strategies (i.e., insertion, deletion, and search), which aid the response selection model towards maintaining dialog coherence. Further, UMS are self-supervised methods that do not require additional annotation and thus can be easily incorporated into existing approaches. Extensive evaluation across multiple languages and models shows that UMS are highly effective in teaching dialog consistency, which lead to models pushing the state-of-the-art with significant margins on multiple public benchmark datasets.