Westenbroek, Tyler
Rapidly Adapting Policies to the Real World via Simulation-Guided Fine-Tuning
Yin, Patrick, Westenbroek, Tyler, Bagaria, Simran, Huang, Kevin, Cheng, Ching-an, Kobolov, Andrey, Gupta, Abhishek
Robot learning requires a considerable amount of high-quality data to realize the promise of generalization. However, large data sets are costly to collect in the real world. Physics simulators can cheaply generate vast data sets with broad coverage over states, actions, and environments. However, physics engines are fundamentally misspecified approximations to reality. This makes direct zero-shot transfer from simulation to reality challenging, especially in tasks where precise and force-sensitive manipulation is necessary. Thus, fine-tuning these policies with small real-world data sets is an appealing pathway for scaling robot learning. However, current reinforcement learning fine-tuning frameworks leverage general, unstructured exploration strategies which are too inefficient to make real-world adaptation practical. This paper introduces the Simulation-Guided Fine-tuning (SGFT) framework, which demonstrates how to extract structural priors from physics simulators to substantially accelerate real-world adaptation. Specifically, our approach uses a value function learned in simulation to guide real-world exploration. We demonstrate this approach across five real-world dexterous manipulation tasks where zero-shot sim-to-real transfer fails. We further demonstrate our framework substantially outperforms baseline fine-tuning methods, requiring up to an order of magnitude fewer real-world samples and succeeding at difficult tasks where prior approaches fail entirely. Last but not least, we provide theoretical justification for this new paradigm which underpins how SGFT can rapidly learn high-performance policies in the face of large sim-to-real dynamics gaps. Project webpage: https://weirdlabuw.github.io/sgft/{weirdlabuw.github.io/sgft}
Dense Dynamics-Aware Reward Synthesis: Integrating Prior Experience with Demonstrations
Koprulu, Cevahir, Li, Po-han, Qiu, Tianyu, Zhao, Ruihan, Westenbroek, Tyler, Fridovich-Keil, David, Chinchali, Sandeep, Topcu, Ufuk
Many continuous control problems can be formulated as sparse-reward reinforcement learning (RL) tasks. In principle, online RL methods can automatically explore the state space to solve each new task. However, discovering sequences of actions that lead to a non-zero reward becomes exponentially more difficult as the task horizon increases. Manually shaping rewards can accelerate learning for a fixed task, but it is an arduous process that must be repeated for each new environment. We introduce a systematic reward-shaping framework that distills the information contained in 1) a task-agnostic prior data set and 2) a small number of task-specific expert demonstrations, and then uses these priors to synthesize dense dynamics-aware rewards for the given task. This supervision substantially accelerates learning in our experiments, and we provide analysis demonstrating how the approach can effectively guide online learning agents to faraway goals. Keywords: Imitation Learning, Learning from Demonstrations, Reward Shaping.
Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models
Levy, Jacob, Westenbroek, Tyler, Fridovich-Keil, David
Traditionally, model-based reinforcement learning (MBRL) methods exploit neural networks as flexible function approximators to represent $\textit{a priori}$ unknown environment dynamics. However, training data are typically scarce in practice, and these black-box models often fail to generalize. Modeling architectures that leverage known physics can substantially reduce the complexity of system-identification, but break down in the face of complex phenomena such as contact. We introduce a novel framework for learning semi-structured dynamics models for contact-rich systems which seamlessly integrates structured first principles modeling techniques with black-box auto-regressive models. Specifically, we develop an ensemble of probabilistic models to estimate external forces, conditioned on historical observations and actions, and integrate these predictions using known Lagrangian dynamics. With this semi-structured approach, we can make accurate long-horizon predictions with substantially less data than prior methods. We leverage this capability and propose Semi-Structured Reinforcement Learning ($\texttt{SSRL}$) a simple model-based learning framework which pushes the sample complexity boundary for real-world learning. We validate our approach on a real-world Unitree Go1 quadruped robot, learning dynamic gaits -- from scratch -- on both hard and soft surfaces with just a few minutes of real-world data. Video and code are available at: https://sites.google.com/utexas.edu/ssrl
Enabling Efficient, Reliable Real-World Reinforcement Learning with Approximate Physics-Based Models
Westenbroek, Tyler, Levy, Jacob, Fridovich-Keil, David
We focus on developing efficient and reliable policy optimization strategies for robot learning with real-world data. In recent years, policy gradient methods have emerged as a promising paradigm for training control policies in simulation. However, these approaches often remain too data inefficient or unreliable to train on real robotic hardware. In this paper we introduce a novel policy gradient-based policy optimization framework which systematically leverages a (possibly highly simplified) first-principles model and enables learning precise control policies with limited amounts of real-world data. Our approach $1)$ uses the derivatives of the model to produce sample-efficient estimates of the policy gradient and $2)$ uses the model to design a low-level tracking controller, which is embedded in the policy class. Theoretical analysis provides insight into how the presence of this feedback controller overcomes key limitations of stand-alone policy gradient methods, while hardware experiments with a small car and quadruped demonstrate that our approach can learn precise control strategies reliably and with only minutes of real-world data.
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization
Pfrommer, Daniel, Simchowitz, Max, Westenbroek, Tyler, Matni, Nikolai, Tu, Stephen
A common pipeline in learning-based control is to iteratively estimate a model of system dynamics, and apply a trajectory optimization algorithm - e.g.~$\mathtt{iLQR}$ - on the learned model to minimize a target cost. This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems. We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing $\mathtt{iLQR}$-like policy updates. We demonstrate that this algorithm attains sample complexity polynomial in relevant problem parameters, and, by synthesizing locally stabilizing gains, overcomes exponential dependence in problem horizon. Experimental results validate the performance of our algorithm, and compare to natural deep-learning baselines.
Lyapunov Design for Robust and Efficient Robotic Reinforcement Learning
Westenbroek, Tyler, Castaneda, Fernando, Agrawal, Ayush, Sastry, Shankar, Sreenath, Koushil
Recent advances in the reinforcement learning (RL) literature have enabled roboticists to automatically train complex policies in simulated environments. However, due to the poor sample complexity of these methods, solving RL problems using real-world data remains a challenging problem. This paper introduces a novel cost-shaping method which aims to reduce the number of samples needed to learn a stabilizing controller. The method adds a term involving a Control Lyapunov Function (CLF) -- an `energy-like' function from the model-based control literature -- to typical cost formulations. Theoretical results demonstrate the new costs lead to stabilizing controllers when smaller discount factors are used, which is well-known to reduce sample complexity. Moreover, the addition of the CLF term `robustifies' the search for a stabilizing controller by ensuring that even highly sub-optimal polices will stabilize the system. We demonstrate our approach with two hardware examples where we learn stabilizing controllers for a cartpole and an A1 quadruped with only seconds and a few minutes of fine-tuning data, respectively. Furthermore, simulation benchmark studies show that obtaining stabilizing policies by optimizing our proposed costs requires orders of magnitude less data compared to standard cost designs.
Competitive Statistical Estimation with Strategic Data Sources
Westenbroek, Tyler, Dong, Roy, Ratliff, Lillian J., Sastry, S. Shankar
In recent years, data has played an increasingly important role in the economy as a good in its own right. In many settings, data aggregators cannot directly verify the quality of the data they purchase, nor the effort exerted by data sources when creating the data. Recent work has explored mechanisms to ensure that the data sources share high quality data with a single data aggregator, addressing the issue of moral hazard. Oftentimes, there is a unique, socially efficient solution. In this paper, we consider data markets where there is more than one data aggregator. Since data can be cheaply reproduced and transmitted once created, data sources may share the same data with more than one aggregator, leading to free-riding between data aggregators. This coupling can lead to non-uniqueness of equilibria and social inefficiency. We examine a particular class of mechanisms that have received study recently in the literature, and we characterize all the generalized Nash equilibria of the resulting data market. We show that, in contrast to the single-aggregator case, there is either infinitely many generalized Nash equilibria or none. We also provide necessary and sufficient conditions for all equilibria to be socially inefficient. In our analysis, we identify the components of these mechanisms which give rise to these undesirable outcomes, showing the need for research into mechanisms for competitive settings with multiple data purchasers and sellers.