Goto

Collaborating Authors

 West, Robert L.


The Computational Mechanisms of Detached Mindfulness

arXiv.org Artificial Intelligence

This paper investigates the computational mechanisms underlying a type of metacognitive monitoring known as detached mindfulness, a particularly effective therapeutic technique within cognitive psychology. While research strongly supports the capacity of detached mindfulness to reduce depression and anxiety, its cognitive and computational underpinnings remain largely unexplained. We employ a computational model of metacognitive skill to articulate the mechanisms through which a detached perception of affect reduces emotional reactivity.


Bridging Generative Networks with the Common Model of Cognition

arXiv.org Artificial Intelligence

This article presents a theoretical framework for adapting the Common Model of Cognition to large generative network models within the field of artificial intelligence. This can be accomplished by restructuring modules within the Common Model into shadow production systems that are peripheral to a central production system, which handles higher-level reasoning based on the shadow productions' output. Implementing this novel structure within the Common Model allows for a seamless connection between cognitive architectures and generative neural networks.


AAAI 2022 Fall Symposium: System-1 and System-2 realized within the Common Model of Cognition

arXiv.org Artificial Intelligence

Attempts to import dual-system descriptions of System-1 and System-2 into AI have been hindered by a lack of clarity over their distinction. We address this and other issues by situating System-1 and System-2 within the Common Model of Cognition. Results show that what are thought to be distinctive characteristics of System-1 and 2 instead form a spectrum of cognitive properties. The Common Model provides a comprehensive vision of the computational units involved in System-1 and System-2, their underlying mechanisms, and the implications for learning, metacognition, and emotion.


Clarifying System 1 & 2 through the Common Model of Cognition

arXiv.org Artificial Intelligence

There have been increasing challenges to dual-system descriptions of System-1 and System-2, critiquing them as imprecise and fostering misconceptions. We address these issues here by way of Dennett's appeal to use computational thinking as an analytical tool, specifically we employ the Common Model of Cognition. Results show that the characteristics thought to be distinctive of System-1 and System-2 instead form a spectrum of cognitive properties. By grounding System-1 and System-2 in the Common Model we aim to clarify their underlying mechanisms, persisting misconceptions, and implications for metacognition.


A Framework for Theories of Human Memory

AAAI Conferences

We present analysis of existing memory models, examining how models represent knowledge, structure memory, learn, make decisions, and predict reaction times. On the basis of this analysis, we propose a theoretical framework that characterizes memory modelling in terms of six key decisions: (1) choice of knowledge representation scheme, (2) choice of data structure, (3) choice of associative architecture, (4) choice of learning rule, (5) choice of time variant process, and (6) choice of response decision criteria. This framework is both descriptive and proscriptive: we intend to both describe the state of the literature and outline what we believe is the most fruitful space of possibilities for the development of future memory models.