Goto

Collaborating Authors

 Wessel, Michael


Widening the Dialogue Workflow Modeling Bottleneck in Ontology-Based Personal Assistants

arXiv.org Artificial Intelligence

We present a new approach to dialogue specification for Virtual Personal Assistants (VPAs) based on so-called dialogue workflow graphs, with several demonstrated advantages over current ontology-based methods. Our new dialogue specification language (DSL) enables customers to more easily participate in the VPA modeling process due to a user-friendly modeling framework. Resulting models are also significantly more compact. VPAs can be developed much more rapidly. The DSL is a new modeling layer on top of our ontology-based Dialogue Management (DM) framework OntoVPA. We explain the rationale and benefits behind the new language and support our claims with concrete reduced Level-of-Effort (LOE) numbers from two recent OntoVPA projects.


Large-Scale Analogical Reasoning

AAAI Conferences

Cognitive simulation of analogical processing can be used to answer comparison questions such as: What are the similarities and/or differences between A and B, for concepts A and B in a knowledge base (KB). Previous attempts to use a general-purpose analogical reasoner to answer such questions revealed three major problems: (a) the system presented too much information in the answer, and the salient similarity or difference was not highlighted; (b) analogical inference found some incorrect differences; and (c) some expected similarities were not found. The cause of these problems was primarily a lack of a well-curated KB and, and secondarily, algorithmic deficiencies. In this paper, relying on a well-curated biology KB, we present a specific implementation of comparison questions inspired by a general model of analogical reasoning. We present numerous examples of answers produced by the system and empirical data on answer quality to illustrate that we have addressed many of the problems of the previous system.