Goto

Collaborating Authors

 Wenwu Zhu



Weakly Supervised Dense Event Captioning in Videos

Neural Information Processing Systems

Dense event captioning aims to detect and describe all events of interest contained in a video. Despite the advanced development in this area, existing methods tackle this task by making use of dense temporal annotations, which is dramatically source-consuming. This paper formulates a new problem: weakly supervised dense event captioning, which does not require temporal segment annotations for model training. Our solution is based on the one-to-one correspondence assumption, each caption describes one temporal segment, and each temporal segment has one caption, which holds in current benchmark datasets and most real-world cases. We decompose the problem into a pair of dual problems: event captioning and sentence localization and present a cycle system to train our model. Extensive experimental results are provided to demonstrate the ability of our model on both dense event captioning and sentence localization in videos.


Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos

Neural Information Processing Systems

Temporal sentence grounding in videos aims to detect and localize one target video segment, which semantically corresponds to a given sentence. Existing methods mainly tackle this task via matching and aligning semantics between a sentence and candidate video segments, while neglect the fact that the sentence information plays an important role in temporally correlating and composing the described contents in videos. In this paper, we propose a novel semantic conditioned dynamic modulation (SCDM) mechanism, which relies on the sentence semantics to modulate the temporal convolution operations for better correlating and composing the sentencerelated video contents over time. More importantly, the proposed SCDM performs dynamically with respect to the diverse video contents so as to establish a more precise matching relationship between sentence and video, thereby improving the temporal grounding accuracy. Extensive experiments on three public datasets demonstrate that our proposed model outperforms the state-of-the-arts with clear margins, illustrating the ability of SCDM to better associate and localize relevant video contents for temporal sentence grounding. Our code for this paper is available at https://github.com/yytzsy/SCDM.


Learning Disentangled Representations for Recommendation

Neural Information Processing Systems

User behavior data in recommender systems are driven by the complex interactions of many latent factors behind the users' decision making processes. The factors are highly entangled, and may range from high-level ones that govern user intentions, to low-level ones that characterize a user's preference when executing an intention. Learning representations that uncover and disentangle these latent factors can bring enhanced robustness, interpretability, and controllability. However, learning such disentangled representations from user behavior is challenging, and remains largely neglected by the existing literature. In this paper, we present the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled representations from user behavior. Our approach achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a shirt or a cellphone), while capturing the preference of a user regarding the different concepts separately. A micro-disentanglement regularizer, stemming from an information-theoretic interpretation of VAEs, then forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). Empirical results show that our approach can achieve substantial improvement over the state-of-the-art baselines. We further demonstrate that the learned representations are interpretable and controllable, which can potentially lead to a new paradigm for recommendation where users are given fine-grained control over targeted aspects of the recommendation lists.


Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos

Neural Information Processing Systems

Temporal sentence grounding in videos aims to detect and localize one target video segment, which semantically corresponds to a given sentence. Existing methods mainly tackle this task via matching and aligning semantics between a sentence and candidate video segments, while neglect the fact that the sentence information plays an important role in temporally correlating and composing the described contents in videos. In this paper, we propose a novel semantic conditioned dynamic modulation (SCDM) mechanism, which relies on the sentence semantics to modulate the temporal convolution operations for better correlating and composing the sentencerelated video contents over time. More importantly, the proposed SCDM performs dynamically with respect to the diverse video contents so as to establish a more precise matching relationship between sentence and video, thereby improving the temporal grounding accuracy. Extensive experiments on three public datasets demonstrate that our proposed model outperforms the state-of-the-arts with clear margins, illustrating the ability of SCDM to better associate and localize relevant video contents for temporal sentence grounding. Our code for this paper is available at https://github.com/yytzsy/SCDM.