Wenlin Wang
Improving Textual Network Learning with Variational Homophilic Embeddings
Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin
The performance of many network learning applications crucially hinges on the success of network embedding algorithms, which aim to encode rich network information into low-dimensional vertex-based vector representations. This paper considers a novel variational formulation of network embeddings, with special focus on textual networks. Different from most existing methods that optimize a discriminative objective, we introduce Variational Homophilic Embedding (VHE), a fully generative model that learns network embeddings by modeling the semantic (textual) information with a variational autoencoder, while accounting for the structural (topology) information through a novel homophilic prior design. Homophilic vertex embeddings encourage similar embedding vectors for related (connected) vertices. The proposed VHE promises better generalization for downstream tasks, robustness to incomplete observations, and the ability to generalize to unseen vertices. Extensive experiments on real-world networks, for multiple tasks, demonstrate that the proposed method consistently achieves superior performance relative to competing state-of-the-art approaches.
Certified Adversarial Robustness with Additive Noise
Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin
The existence of adversarial data examples has drawn significant attention in the deep-learning community; such data are seemingly minimally perturbed relative to the original data, but lead to very different outputs from a deep-learning algorithm. Although a significant body of work on developing defensive models has been considered, most such models are heuristic and are often vulnerable to adaptive attacks. Defensive methods that provide theoretical robustness guarantees have been studied intensively, yet most fail to obtain non-trivial robustness when a large-scale model and data are present. To address these limitations, we introduce a framework that is scalable and provides certified bounds on the norm of the input manipulation for constructing adversarial examples. We establish a connection between robustness against adversarial perturbation and additive random noise, and propose a training strategy that can significantly improve the certified bounds. Our evaluation on MNIST, CIFAR-10 and ImageNet suggests that the proposed method is scalable to complicated models and large data sets, while providing competitive robustness to state-of-the-art provable defense methods.
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Qian Yang, Zhouyuan Huo, Wenlin Wang, Lawrence Carin
Language models are essential for natural language processing (NLP) tasks, such as machine translation and text summarization. Remarkable performance has been demonstrated recently across many NLP domains via a Transformer-based language model with over a billion parameters, verifying the benefits of model size. Model parallelism is required if a model is too large to fit in a single computing device. Current methods for model parallelism either suffer from backward locking in backpropagation or are not applicable to language models. We propose the first model-parallel algorithm that speeds the training of Transformer-based language models. We also prove that our proposed algorithm is guaranteed to converge to critical points for non-convex problems. Extensive experiments on Transformer and Transformer-XL language models demonstrate that the proposed algorithm obtains a much faster speedup beyond data parallelism, with comparable or better accuracy. Code to reproduce experiments is to be found at https://github.
Improving Textual Network Learning with Variational Homophilic Embeddings
Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin
The performance of many network learning applications crucially hinges on the success of network embedding algorithms, which aim to encode rich network information into low-dimensional vertex-based vector representations. This paper considers a novel variational formulation of network embeddings, with special focus on textual networks. Different from most existing methods that optimize a discriminative objective, we introduce Variational Homophilic Embedding (VHE), a fully generative model that learns network embeddings by modeling the semantic (textual) information with a variational autoencoder, while accounting for the structural (topology) information through a novel homophilic prior design. Homophilic vertex embeddings encourage similar embedding vectors for related (connected) vertices. The proposed VHE promises better generalization for downstream tasks, robustness to incomplete observations, and the ability to generalize to unseen vertices. Extensive experiments on real-world networks, for multiple tasks, demonstrate that the proposed method consistently achieves superior performance relative to competing state-of-the-art approaches.
Certified Adversarial Robustness with Additive Noise
Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin
The existence of adversarial data examples has drawn significant attention in the deep-learning community; such data are seemingly minimally perturbed relative to the original data, but lead to very different outputs from a deep-learning algorithm. Although a significant body of work on developing defensive models has been considered, most such models are heuristic and are often vulnerable to adaptive attacks. Defensive methods that provide theoretical robustness guarantees have been studied intensively, yet most fail to obtain non-trivial robustness when a large-scale model and data are present. To address these limitations, we introduce a framework that is scalable and provides certified bounds on the norm of the input manipulation for constructing adversarial examples. We establish a connection between robustness against adversarial perturbation and additive random noise, and propose a training strategy that can significantly improve the certified bounds. Our evaluation on MNIST, CIFAR-10 and ImageNet suggests that the proposed method is scalable to complicated models and large data sets, while providing competitive robustness to state-of-the-art provable defense methods.
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Qian Yang, Zhouyuan Huo, Wenlin Wang, Lawrence Carin
Language models are essential for natural language processing (NLP) tasks, such as machine translation and text summarization. Remarkable performance has been demonstrated recently across many NLP domains via a Transformer-based language model with over a billion parameters, verifying the benefits of model size. Model parallelism is required if a model is too large to fit in a single computing device. Current methods for model parallelism either suffer from backward locking in backpropagation or are not applicable to language models. We propose the first model-parallel algorithm that speeds the training of Transformer-based language models. We also prove that our proposed algorithm is guaranteed to converge to critical points for non-convex problems. Extensive experiments on Transformer and Transformer-XL language models demonstrate that the proposed algorithm obtains a much faster speedup beyond data parallelism, with comparable or better accuracy. Code to reproduce experiments is to be found at https://github.
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Hongteng Xu, Wenlin Wang, Wei Liu, Lawrence Carin
We propose a novel Wasserstein method with a distillation mechanism, yielding joint learning of word embeddings and topics. The proposed method is based on the fact that the Euclidean distance between word embeddings may be employed as the underlying distance in the Wasserstein topic model. The word distributions of topics, their optimal transports to the word distributions of documents, and the embeddings of words are learned in a unified framework. When learning the topic model, we leverage a distilled underlying distance matrix to update the topic distributions and smoothly calculate the corresponding optimal transports. Such a strategy provides the updating of word embeddings with robust guidance, improving the algorithmic convergence. As an application, we focus on patient admission records, in which the proposed method embeds the codes of diseases and procedures and learns the topics of admissions, obtaining superior performance on clinically-meaningful disease network construction, mortality prediction as a function of admission codes, and procedure recommendation.