Goto

Collaborating Authors

 Weng, Weining


Self-supervised Learning for Electroencephalogram: A Systematic Survey

arXiv.org Artificial Intelligence

Electroencephalogram (EEG) is a non-invasive technique to record bioelectrical signals. Integrating supervised deep learning techniques with EEG signals has recently facilitated automatic analysis across diverse EEG-based tasks. However, the label issues of EEG signals have constrained the development of EEG-based deep models. Obtaining EEG annotations is difficult that requires domain experts to guide collection and labeling, and the variability of EEG signals among different subjects causes significant label shifts. To solve the above challenges, self-supervised learning (SSL) has been proposed to extract representations from unlabeled samples through well-designed pretext tasks. This paper concentrates on integrating SSL frameworks with temporal EEG signals to achieve efficient representation and proposes a systematic review of the SSL for EEG signals. In this paper, 1) we introduce the concept and theory of self-supervised learning and typical SSL frameworks. 2) We provide a comprehensive review of SSL for EEG analysis, including taxonomy, methodology, and technique details of the existing EEG-based SSL frameworks, and discuss the difference between these methods. 3) We investigate the adaptation of the SSL approach to various downstream tasks, including the task description and related benchmark datasets. 4) Finally, we discuss the potential directions for future SSL-EEG research.


A Knowledge-Driven Cross-view Contrastive Learning for EEG Representation

arXiv.org Artificial Intelligence

Due to the abundant neurophysiological information in the electroencephalogram (EEG) signal, EEG signals integrated with deep learning methods have gained substantial traction across numerous real-world tasks. However, the development of supervised learning methods based on EEG signals has been hindered by the high cost and significant label discrepancies to manually label large-scale EEG datasets. Self-supervised frameworks are adopted in vision and language fields to solve this issue, but the lack of EEG-specific theoretical foundations hampers their applicability across various tasks. To solve these challenges, this paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2), which integrates neurological theory to extract effective representations from EEG with limited labels. The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity. Sequentially, inter-view and cross-view contrastive learning pipelines in combination with various augmentation methods are applied to capture neural features from different views. By modeling prior neural knowledge based on homologous neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations. Experimental results on different downstream tasks demonstrate that our method outperforms state-of-the-art methods, highlighting the superior generalization of neural knowledge-supported EEG representations across various brain tasks.