Goto

Collaborating Authors

 Weng, Jian


Towards Understanding and Enhancing Security of Proof-of-Training for DNN Model Ownership Verification

arXiv.org Artificial Intelligence

The great economic values of deep neural networks (DNNs) urge AI enterprises to protect their intellectual property (IP) for these models. Recently, proof-of-training (PoT) has been proposed as a promising solution to DNN IP protection, through which AI enterprises can utilize the record of DNN training process as their ownership proof. To prevent attackers from forging ownership proof, a secure PoT scheme should be able to distinguish honest training records from those forged by attackers. Although existing PoT schemes provide various distinction criteria, these criteria are based on intuitions or observations. The effectiveness of these criteria lacks clear and comprehensive analysis, resulting in existing schemes initially deemed secure being swiftly compromised by simple ideas. In this paper, we make the first move to identify distinction criteria in the style of formal methods, so that their effectiveness can be explicitly demonstrated. Specifically, we conduct systematic modeling to cover a wide range of attacks and then theoretically analyze the distinctions between honest and forged training records. The analysis results not only induce a universal distinction criterion, but also provide detailed reasoning to demonstrate its effectiveness in defending against attacks covered by our model. Guided by the criterion, we propose a generic PoT construction that can be instantiated into concrete schemes. This construction sheds light on the realization that trajectory matching algorithms, previously employed in data distillation, possess significant advantages in PoT construction. Experimental results demonstrate that our scheme can resist attacks that have compromised existing PoT schemes, which corroborates its superiority in security.


Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales

arXiv.org Artificial Intelligence

Developing robust and interpretable vision systems is a crucial step towards trustworthy artificial intelligence. In this regard, a promising paradigm considers embedding task-required invariant structures, e.g., geometric invariance, in the fundamental image representation. However, such invariant representations typically exhibit limited discriminability, limiting their applications in larger-scale trustworthy vision tasks. For this open problem, we conduct a systematic investigation of hierarchical invariance, exploring this topic from theoretical, practical, and application perspectives. At the theoretical level, we show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture yet in a fully interpretable manner. The general blueprint, specific definitions, invariant properties, and numerical implementations are provided. At the practical level, we discuss how to customize this theoretical framework into a given task. With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner. We demonstrate the above arguments with accuracy, invariance, and efficiency results on texture, digit, and parasite classification experiments. Furthermore, at the application level, our representations are explored in real-world forensics tasks on adversarial perturbations and Artificial Intelligence Generated Content (AIGC). Such applications reveal that the proposed strategy not only realizes the theoretically promised invariance, but also exhibits competitive discriminability even in the era of deep learning. For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.


Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

arXiv.org Artificial Intelligence

Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions.


pvCNN: Privacy-Preserving and Verifiable Convolutional Neural Network Testing

arXiv.org Artificial Intelligence

This paper proposes a new approach for privacy-preserving and verifiable convolutional neural network (CNN) testing, enabling a CNN model developer to convince a user of the truthful CNN performance over non-public data from multiple testers, while respecting model privacy. To balance the security and efficiency issues, three new efforts are done by appropriately integrating homomorphic encryption (HE) and zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) primitives with the CNN testing. First, a CNN model to be tested is strategically partitioned into a private part kept locally by the model developer, and a public part outsourced to an outside server. Then, the private part runs over HE-protected test data sent by a tester and transmits its outputs to the public part for accomplishing subsequent computations of the CNN testing. Second, the correctness of the above CNN testing is enforced by generating zk-SNARK based proofs, with an emphasis on optimizing proving overhead for two-dimensional (2-D) convolution operations, since the operations dominate the performance bottleneck during generating proofs. We specifically present a new quadratic matrix programs (QMPs)-based arithmetic circuit with a single multiplication gate for expressing 2-D convolution operations between multiple filters and inputs in a batch manner. Third, we aggregate multiple proofs with respect to a same CNN model but different testers' test data (i.e., different statements) into one proof, and ensure that the validity of the aggregated proof implies the validity of the original multiple proofs. Lastly, our experimental results demonstrate that our QMPs-based zk-SNARK performs nearly 13.9$\times$faster than the existing QAPs-based zk-SNARK in proving time, and 17.6$\times$faster in Setup time, for high-dimension matrix multiplication.


A Survey of Secure Computation Using Trusted Execution Environments

arXiv.org Artificial Intelligence

As an essential technology underpinning trusted computing, the trusted execution environment (TEE) allows one to launch computation tasks on both on- and off-premises data while assuring confidentiality and integrity. This article provides a systematic review and comparison of TEE-based secure computation protocols. We first propose a taxonomy that classifies secure computation protocols into three major categories, namely secure outsourced computation, secure distributed computation and secure multi-party computation. To enable a fair comparison of these protocols, we also present comprehensive assessment criteria with respect to four aspects: setting, methodology, security and performance. Based on these criteria, we review, discuss and compare the state-of-the-art TEE-based secure computation protocols for both general-purpose computation functions and special-purpose ones, such as privacy-preserving machine learning and encrypted database queries. To the best of our knowledge, this article is the first survey to review TEE-based secure computation protocols and the comprehensive comparison can serve as a guideline for selecting suitable protocols for deployment in practice. Finally, we also discuss several future research directions and challenges.


Enhancing Deep Knowledge Tracing with Auxiliary Tasks

arXiv.org Artificial Intelligence

Knowledge tracing (KT) is the problem of predicting students' future performance based on their historical interactions with intelligent tutoring systems. Recent studies have applied multiple types of deep neural networks to solve the KT problem. However, there are two important factors in real-world educational data that are not well represented. First, most existing works augment input representations with the co-occurrence matrix of questions and knowledge components\footnote{\label{ft:kc}A KC is a generalization of everyday terms like concept, principle, fact, or skill.} (KCs) but fail to explicitly integrate such intrinsic relations into the final response prediction task. Second, the individualized historical performance of students has not been well captured. In this paper, we proposed \emph{AT-DKT} to improve the prediction performance of the original deep knowledge tracing model with two auxiliary learning tasks, i.e., \emph{question tagging (QT) prediction task} and \emph{individualized prior knowledge (IK) prediction task}. Specifically, the QT task helps learn better question representations by predicting whether questions contain specific KCs. The IK task captures students' global historical performance by progressively predicting student-level prior knowledge that is hidden in students' historical learning interactions. We conduct comprehensive experiments on three real-world educational datasets and compare the proposed approach to both deep sequential KT models and non-sequential models. Experimental results show that \emph{AT-DKT} outperforms all sequential models with more than 0.9\% improvements of AUC for all datasets, and is almost the second best compared to non-sequential models. Furthermore, we conduct both ablation studies and quantitative analysis to show the effectiveness of auxiliary tasks and the superior prediction outcomes of \emph{AT-DKT}.


US-Rule: Discovering Utility-driven Sequential Rules

arXiv.org Artificial Intelligence

Utility-driven mining is an important task in data science and has many applications in real life. High utility sequential pattern mining (HUSPM) is one kind of utility-driven mining. HUSPM aims to discover all sequential patterns with high utility. However, the existing algorithms of HUSPM can not provide an accurate probability to deal with some scenarios for prediction or recommendation. High-utility sequential rule mining (HUSRM) was proposed to discover all sequential rules with high utility and high confidence. There is only one algorithm proposed for HUSRM, which is not enough efficient. In this paper, we propose a faster algorithm, called US-Rule, to efficiently mine high-utility sequential rules. It utilizes rule estimated utility co-occurrence pruning strategy (REUCP) to avoid meaningless computation. To improve the efficiency on dense and long sequence datasets, four tighter upper bounds (LEEU, REEU, LERSU, RERSU) and their corresponding pruning strategies (LEEUP, REEUP, LERSUP, RERSUP) are proposed. Besides, US-Rule proposes rule estimated utility recomputing pruning strategy (REURP) to deal with sparse datasets. At last, a large number of experiments on different datasets compared to the state-of-the-art algorithm demonstrate that US-Rule can achieve better performance in terms of execution time, memory consumption and scalability.


RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial Network

arXiv.org Machine Learning

Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection. Without directly interactive with training examples, the generative model can be fully used to estimate the underlying distribution of an original dataset while the discriminative model can examine the quality of the generated samples by comparing the label values with the training examples. However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information. To mitigate this information leakage and construct a private GAN, in this work we propose a R\'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training. Moreover, we derive the analytical results of the total privacy loss under the subsampling method and cumulated iterations, which show its effectiveness on the privacy budget allocation. In addition, in order to mitigate the negative impact brought by the injecting noise, we enhance the proposed algorithm by adding an adaptive noise tuning step, which will change the volume of added noise according to the testing accuracy. Through extensive experimental results, we verify that the proposed algorithm can achieve a better privacy level while producing high-quality samples compared with a benchmark DP-GAN scheme based on noise perturbation on training gradients.


DAMIA: Leveraging Domain Adaptation as a Defense against Membership Inference Attacks

arXiv.org Artificial Intelligence

Deep Learning (DL) techniques allow ones to train models from a dataset to solve tasks. DL has attracted much interest given its fancy performance and potential market value, while security issues are amongst the most colossal concerns. However, the DL models may be prone to the membership inference attack, where an attacker determines whether a given sample is from the training dataset. Efforts have been made to hinder the attack but unfortunately, they may lead to a major overhead or impaired usability. In this paper, we propose and implement DAMIA, leveraging Domain Adaptation (DA) as a defense aginist membership inference attacks. Our observation is that during the training process, DA obfuscates the dataset to be protected using another related dataset, and derives a model that underlyingly extracts the features from both datasets. Seeing that the model is obfuscated, membership inference fails, while the extracted features provide supports for usability. Extensive experiments have been conducted to validates our intuition. The model trained by DAMIA has a negligible footprint to the usability. Our experiment also excludes factors that may hinder the performance of DAMIA, providing a potential guideline to vendors and researchers to benefit from our solution in a timely manner.