Wen, Zujie
Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
Ling Team, null, Zeng, Binwei, Huang, Chao, Zhang, Chao, Tian, Changxin, Chen, Cong, Jin, Dingnan, Yu, Feng, Zhu, Feng, Yuan, Feng, Wang, Fakang, Wang, Gangshan, Zhai, Guangyao, Zhang, Haitao, Li, Huizhong, Zhou, Jun, Liu, Jia, Fang, Junpeng, Ou, Junjie, Hu, Jun, Luo, Ji, Zhang, Ji, Liu, Jian, Sha, Jian, Qian, Jianxue, Wu, Jiewei, Zhao, Junping, Li, Jianguo, Feng, Jubao, Di, Jingchao, Xu, Junming, Yao, Jinghua, Xu, Kuan, Du, Kewei, Li, Longfei, Liang, Lei, Yu, Lu, Tang, Li, Ju, Lin, Xu, Peng, Cui, Qing, Liu, Song, Li, Shicheng, Song, Shun, Yan, Song, Cai, Tengwei, Chen, Tianyi, Guo, Ting, Huang, Ting, Feng, Tao, Wu, Tao, Wu, Wei, Zhang, Xiaolu, Yang, Xueming, Zhao, Xin, Hu, Xiaobo, Lin, Xin, Zhao, Yao, Wang, Yilong, Guo, Yongzhen, Wang, Yuanyuan, Yang, Yue, Cao, Yang, Fu, Yuhao, Xiong, Yi, Li, Yanzhe, Li, Zhe, Zhang, Zhiqiang, Liu, Ziqi, Huan, Zhaoxin, Wen, Zujie, Sun, Zhenhang, Du, Zhuoxuan, He, Zhengyu
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled B\v{a}il\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
Hummer: Towards Limited Competitive Preference Dataset
Jiang, Li, Wu, Yusen, Xiong, Junwu, Ruan, Jingqing, Ding, Yichuan, Guo, Qingpei, Wen, Zujie, Zhou, Jun, Deng, Xiaotie
Preference datasets are essential for incorporating human preferences into pre-trained language models, playing a key role in the success of Reinforcement Learning from Human Feedback. However, these datasets often demonstrate conflicting alignment objectives, leading to increased vulnerability to jailbreak attacks and challenges in adapting downstream tasks to prioritize specific alignment objectives without negatively impacting others. In this work, we introduce a novel statistical metric, Alignment Dimension Conflict, to quantify the degree of conflict within preference datasets. We then present \texttt{Hummer} and its fine-grained variant, \texttt{Hummer-F}, as innovative pairwise preference datasets with reduced-conflict alignment objectives. \texttt{Hummer} is built based on UltraFeedback and is enhanced by AI feedback from GPT-4, marking as the first preference dataset aimed at reducing the competition between alignment objectives. Furthermore, we develop reward models, HummerRM and HummerRM-F, which employ a hybrid sampling approach to balance diverse alignment objectives effectively. This sampling method positions HummerRM as an ideal model for domain-specific further fine-tuning and reducing vulnerabilities to attacks.
Strength Lies in Differences! Towards Effective Non-collaborative Dialogues via Tailored Strategy Planning
Zhang, Tong, Huang, Chen, Deng, Yang, Liang, Hongru, Liu, Jia, Wen, Zujie, Lei, Wenqiang, Chua, Tat-Seng
We investigate non-collaborative dialogue agents, which are expected to engage in strategic conversations with diverse users, for securing a mutual agreement that leans favorably towards the system's objectives. This poses two main challenges for existing dialogue agents: 1) The inability to integrate user-specific characteristics into the strategic planning, and 2) The difficulty of training strategic planners that can be generalized to diverse users. To address these challenges, we propose Trip to enhance the capability in tailored strategic planning, incorporating a user-aware strategic planning module and a population-based training paradigm. Through experiments on benchmark non-collaborative dialogue tasks, we demonstrate the effectiveness of Trip in catering to diverse users.
AMOR: A Recipe for Building Adaptable Modular Knowledge Agents Through Process Feedback
Guan, Jian, Wu, Wei, Wen, Zujie, Xu, Peng, Wang, Hongning, Huang, Minlie
The notable success of large language models (LLMs) has sparked an upsurge in building language agents to complete various complex tasks. We present AMOR, an agent framework based on open-source LLMs, which reasons with external knowledge bases and adapts to specific domains through human supervision to the reasoning process. AMOR builds reasoning logic over a finite state machine (FSM) that solves problems through autonomous executions and transitions over disentangled modules. This allows humans to provide direct feedback to the individual modules, and thus naturally forms process supervision. Based on this reasoning and feedback framework, we develop AMOR through two-stage fine-tuning: warm-up and adaptation. The former fine-tunes the LLM with examples automatically constructed from various public datasets and enables AMOR to generalize across different knowledge environments, while the latter tailors AMOR to specific domains using process feedback. Extensive experiments across multiple domains demonstrate the advantage of AMOR to strong baselines, thanks to its FSM-based reasoning and process feedback mechanism.
Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language Model Systems
Cui, Tianyu, Wang, Yanling, Fu, Chuanpu, Xiao, Yong, Li, Sijia, Deng, Xinhao, Liu, Yunpeng, Zhang, Qinglin, Qiu, Ziyi, Li, Peiyang, Tan, Zhixing, Xiong, Junwu, Kong, Xinyu, Wen, Zujie, Xu, Ke, Li, Qi
Large language models (LLMs) have strong capabilities in solving diverse natural language processing tasks. However, the safety and security issues of LLM systems have become the major obstacle to their widespread application. Many studies have extensively investigated risks in LLM systems and developed the corresponding mitigation strategies. Leading-edge enterprises such as OpenAI, Google, Meta, and Anthropic have also made lots of efforts on responsible LLMs. Therefore, there is a growing need to organize the existing studies and establish comprehensive taxonomies for the community. In this paper, we delve into four essential modules of an LLM system, including an input module for receiving prompts, a language model trained on extensive corpora, a toolchain module for development and deployment, and an output module for exporting LLM-generated content. Based on this, we propose a comprehensive taxonomy, which systematically analyzes potential risks associated with each module of an LLM system and discusses the corresponding mitigation strategies. Furthermore, we review prevalent benchmarks, aiming to facilitate the risk assessment of LLM systems. We hope that this paper can help LLM participants embrace a systematic perspective to build their responsible LLM systems.
Knowing-how & Knowing-that: A New Task for Machine Comprehension of User Manuals
Liang, Hongru, Liu, Jia, Du, Weihong, Jin, Dingnan, Lei, Wenqiang, Wen, Zujie, Lv, Jiancheng
The machine reading comprehension (MRC) of user manuals has huge potential in customer service. However, current methods have trouble answering complex questions. Therefore, we introduce the Knowing-how & Knowing-that task that requires the model to answer factoid-style, procedure-style, and inconsistent questions about user manuals. We resolve this task by jointly representing the steps and facts in a graph TARA, which supports a unified inference of various questions. Towards a systematical benchmarking study, we design a heuristic method to automatically parse user manuals into TARAs and build an annotated dataset to test the model's ability in answering real-world questions. Empirical results demonstrate that representing user manuals as TARAs is a desired solution for the MRC of user manuals. An in-depth investigation of TARA further sheds light on the issues and broader impacts of future representations of user manuals. We hope our work can move the MRC of user manuals to a more complex and realistic stage.
SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
Xuan, Kuan, Wang, Yongbo, Wang, Yongliang, Wen, Zujie, Dong, Yang
In text-to-SQL task, seq-to-seq models often lead to sub-optimal performance due to limitations in their architecture. In this paper, we present a simple yet effective approach that adapts transformer-based seq-to-seq model to robust text-to-SQL generation. Instead of inducing constraint to decoder or reformat the task as slot-filling, we propose to train seq-to-seq model with Schema aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These denoising objectives acts as the auxiliary tasks for better modeling the structural data in S2S generation. In addition, we improve and propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of seq-to-seq model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. The results indicate that the capacity of vanilla seq-to-seq architecture for text-to-SQL may have been under-estimated.