Goto

Collaborating Authors

 Wen, Zhen


Recommender Systems in the Era of Large Language Models (LLMs)

arXiv.org Artificial Intelligence

With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.


TAG: Toward Accurate Social Media Content Tagging with a Concept Graph

arXiv.org Artificial Intelligence

Although conceptualization has been widely studied in semantics and knowledge representation, it is still challenging to find the most accurate concept phrases to characterize the main idea of a text snippet on the fast-growing social media. This is partly attributed to the fact that most knowledge bases contain general terms of the world, such as trees and cars, which do not have the defining power or are not interesting enough to social media app users. Another reason is that the intricacy of natural language allows the use of tense, negation and grammar to change the logic or emphasis of language, thus conveying completely different meanings. In this paper, we present TAG, a high-quality concept matching dataset consisting of 10,000 labeled pairs of fine-grained concepts and web-styled natural language sentences, mined from the open-domain social media. The concepts we consider represent the trending interests of online users. Associated with TAG is a concept graph of these fine-grained concepts and entities to provide the structural context information. We evaluate a wide range of popular neural text matching models as well as pre-trained language models on TAG, and point out their insufficiency to tag social media content with the most appropriate concept. We further propose a novel graph-graph matching method that demonstrates superior abstraction and generalization performance by better utilizing both the structural context in the concept graph and logic interactions between semantic units in the sentence via syntactic dependency parsing. We open-source both the TAG dataset and the proposed methods to facilitate further research.


One-Class Conditional Random Fields for Sequential Anomaly Detection

AAAI Conferences

Sequential anomaly detection is a challenging problem due to the one-class nature of the data (i.e., data is collected from only one class) and the temporal dependence in sequential data. We present One-Class Conditional Random Fields (OCCRF) for sequential anomaly detection that learn from a one-class dataset and capture the temporal dependence structure, in an unsupervised fashion. We propose a hinge loss in a regularized risk minimization framework that maximizes the margin between each sequence being classified as "normal" and "abnormal." This allows our model to accept most (but not all) of the training data as normal, yet keeps the solution space tight. Experimental results on a number of real-world datasets show our model outperforming several baselines. We also report an exploratory study on detecting abnormal organizational behavior in enterprise social networks.