Goto

Collaborating Authors

 Wen, Lijie


A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability

arXiv.org Artificial Intelligence

This paper presents the first comprehensive analysis of ChatGPT's Text-to-SQL ability. Given the recent emergence of large-scale conversational language model ChatGPT and its impressive capabilities in both conversational abilities and code generation, we sought to evaluate its Text-to-SQL performance. We conducted experiments on 12 benchmark datasets with different languages, settings, or scenarios, and the results demonstrate that ChatGPT has strong text-to-SQL abilities. Although there is still a gap from the current state-of-the-art (SOTA) model performance, considering that the experiment was conducted in a zero-shot scenario, ChatGPT's performance is still impressive. Notably, in the ADVETA (RPL) scenario, the zero-shot ChatGPT even outperforms the SOTA model that requires fine-tuning on the Spider dataset by 4.1\%, demonstrating its potential for use in practical applications. To support further research in related fields, we have made the data generated by ChatGPT publicly available at https://github.com/THU-BPM/chatgpt-sql.


HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction

arXiv.org Artificial Intelligence

Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.


Gradient Imitation Reinforcement Learning for General Low-Resource Information Extraction

arXiv.org Artificial Intelligence

Abstract--Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).


Graph Neural Network with Curriculum Learning for Imbalanced Node Classification

arXiv.org Artificial Intelligence

Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification. In this work, we reveal the vulnerability of GNN to the imbalance of node labels. Traditional solutions for imbalanced classification (e.g. resampling) are ineffective in node classification without considering the graph structure. Worse still, they may even bring overfitting or underfitting results due to lack of sufficient prior knowledge. To solve these problems, we propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules. For one thing, we hope to acquire certain reliable interpolation nodes and edges through the novel graph-based oversampling based on smoothness and homophily. For another, we combine graph classification loss and metric learning loss which adjust the distance between different nodes associated with minority class in feature space. Inspired by curriculum learning, we dynamically adjust the weights of different modules during training process to achieve better ability of generalization and discrimination. The proposed framework is evaluated via several widely used graph datasets, showing that our proposed model consistently outperforms the existing state-of-the-art methods.


Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction

arXiv.org Artificial Intelligence

Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem, or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.


Learning Algebraic Recombination for Compositional Generalization

arXiv.org Artificial Intelligence

Neural sequence models exhibit limited compositional generalization ability in semantic parsing tasks. Compositional generalization requires algebraic recombination, i.e., dynamically recombining structured expressions in a recursive manner. However, most previous studies mainly concentrate on recombining lexical units, which is an important but not sufficient part of algebraic recombination. In this paper, we propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization. The key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra, thus encouraging algebraic recombination. Specifically, we learn two modules jointly: a Composer for producing latent syntax, and an Interpreter for assigning semantic operations. Experiments on two realistic and comprehensive compositional generalization benchmarks demonstrate the effectiveness of our model. The source code is publicly available at https://github.com/microsoft/ContextualSP.


GAHNE: Graph-Aggregated Heterogeneous Network Embedding

arXiv.org Artificial Intelligence

The real-world networks often compose of different types of nodes and edges with rich semantics, widely known as heterogeneous information network (HIN). Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture rich intrinsic information of heterogeneous networks. However, existing models either depend on manually designing meta-paths, ignore mutual effects between different semantics, or omit some aspects of information from global networks. To address these limitations, we propose a novel Graph-Aggregated Heterogeneous Network Embedding (GAHNE), which is designed to extract the semantics of HINs as comprehensively as possible to improve the results of downstream tasks based on graph convolutional neural networks. In GAHNE model, we develop several mechanisms that can aggregate semantic representations from different single-type sub-networks as well as fuse the global information into final embeddings. Extensive experiments on three real-world HIN datasets show that our proposed model consistently outperforms the existing state-of-the-art methods.


A Graph Representation of Semi-structured Data for Web Question Answering

arXiv.org Artificial Intelligence

The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.


Process Extraction from Texts via Multi-Task Architecture

arXiv.org Artificial Intelligence

Process extraction, a recently emerged interdiscipline, aims to extract procedural knowledge expressed in texts. Previous process extractors heavily depend on domain-specific linguistic knowledge, thus suffer from the problems of poor quality and lack of adaptability. In this paper, we propose a multi-task architecture based model to perform process extraction. This is the first attempt that brings deep learning in process extraction. Specifically, we divide process extraction into three complete and independent subtasks: sentence classification, sentence semantic recognition and semantic role labeling. All of these subtasks are trained jointly, using a weight-sharing multi-task learning (MTL) framework. Moreover, instead of using fixed-size filters, we use multiscale convolutions to perceive more local contextual features. Finally, we propose a recurrent construction algorithm to create a graphical representation from the extracted procedural knowledge. Experimental results demonstrate that our approach can extract more accurate procedural information than state-of-the-art baselines.


TraceWalk: Semantic-based Process Graph Embedding for Consistency Checking

arXiv.org Artificial Intelligence

Process consistency checking (PCC), an interdiscipline of natural language processing (NLP) and business process management (BPM), aims to quantify the degree of (in)consistencies between graphical and textual descriptions of a process. However, previous studies heavily depend on a great deal of complex expert-defined knowledge such as alignment rules and assessment metrics, thus suffer from the problems of low accuracy and poor adaptability when applied in open-domain scenarios. To address the above issues, this paper makes the first attempt that uses deep learning to perform PCC. Specifically, we proposed TraceWalk, using semantic information of process graphs to learn latent node representations, and integrates it into a convolutional neural network (CNN) based model called TraceNet to predict consistencies. The theoretical proof formally provides the PCC's lower limit and experimental results demonstrate that our approach performs more accurately than state-of-the-art baselines.