Goto

Collaborating Authors

 Wen, Lijie


Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking

arXiv.org Artificial Intelligence

As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.


Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation?

arXiv.org Artificial Intelligence

The radioactive nature of Large Language Model (LLM) watermarking enables the detection of watermarks inherited by student models when trained on the outputs of watermarked teacher models, making it a promising tool for preventing unauthorized knowledge distillation. However, the robustness of watermark radioactivity against adversarial actors remains largely unexplored. In this paper, we investigate whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance. We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN). Extensive experiments across multiple model pairs, watermarking schemes and hyper-parameter settings demonstrate that both TP and WN thoroughly eliminate inherited watermarks, with WN achieving this while maintaining knowledge transfer efficiency and low computational overhead. Given the ongoing deployment of watermarking techniques in production LLMs, these findings emphasize the urgent need for more robust defense strategies. Our code is available at https://github.com/THU-BPM/Watermark-Radioactivity-Attack.


Beyond Yes or No: Predictive Compliance Monitoring Approaches for Quantifying the Magnitude of Compliance Violations

arXiv.org Artificial Intelligence

Most existing process compliance monitoring approaches detect compliance violations in an ex post manner. Only predicate prediction focuses on predicting them. However, predicate prediction provides a binary yes/no notion of compliance, lacking the ability to measure to which extent an ongoing process instance deviates from the desired state as specified in constraints. Here, being able to quantify the magnitude of violation would provide organizations with deeper insights into their operational performance, enabling informed decision making to reduce or mitigate the risk of non-compliance. Thus, we propose two predictive compliance monitoring approaches to close this research gap. The first approach reformulates the binary classification problem as a hybrid task that considers both classification and regression, while the second employs a multi-task learning method to explicitly predict the compliance status and the magnitude of violation for deviant cases simultaneously. In this work, we focus on temporal constraints as they are significant in almost any application domain, e.g., health care. The evaluation on synthetic and real-world event logs demonstrates that our approaches are capable of quantifying the magnitude of violations while maintaining comparable performance for compliance predictions achieved by state-of-the-art approaches.


Can Watermarked LLMs be Identified by Users via Crafted Prompts?

arXiv.org Artificial Intelligence

Text watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work investigates the imperceptibility of watermarked LLMs. We design the first unified identification method called Water-Probe that identifies all kinds of watermarking in LLMs through well-designed prompts. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys. The rapid advancement of large language models (LLMs) has led to remarkable achievements in tasks such as question answering (Zhuang et al., 2024), programming (Jiang et al., 2024b), and reasoning (Wei et al., 2022), with widespread applications across various scenarios. Recent research indicates that malicious attackers can steal LLMs through model extraction techniques (Yao et al., 2024), and some users may abuse LLMs to generate and spread harmful information (Wei et al., 2024). Text watermarking techniques for LLMs have become an important method to mitigate the above issues by adding detectable features to LLM outputs (Liu et al., 2024b). Recent researches on LLM watermarking have focused on improving watermark detectability (Kirchenbauer et al., 2023a), minimizing impact on generated text (Aaronson & Kirchner, 2022), and enhancing robustness against text modifications (Liu et al., 2024a).


Interpretable Contrastive Monte Carlo Tree Search Reasoning

arXiv.org Artificial Intelligence

Our motivation comes from: 1. Previous MCTS LLM reasoning works often overlooked its biggest drawback--slower speed compared to CoT; 2. Previous research mainly used MCTS as a tool for LLM reasoning on various tasks with limited quantitative analysis or ablation studies of its components from reasoning interpretability perspective. Thus, we conducted extensive ablation studies and quantitative analysis on components of MCTS, revealing the impact of each component on the MCTS reasoning performance of LLMs. Building on this, (i) we designed a highly interpretable reward model based on the principle of contrastive decoding and (ii) achieved an average speed improvement of 51.9% per node using speculative decoding. Additionally, (iii) we improved UCT node selection strategy and backpropagation used in previous works, resulting in significant performance improvement. We outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step reasoning dataset using Llama-3.1-70B with SC-MCTS With the remarkable development of Large Language Models (LLMs), models such as o1 (OpenAI, 2024a) have now gained a strong ability for multi-step reasoning across complex tasks and can solve problems that are more difficult than previous scientific, code, and mathematical problems. The reasoning task has long been considered challenging for LLMs. These tasks require converting a problem into a series of reasoning steps and then executing those steps to arrive at the correct answer. Recently, LLMs have shown great potential in addressing such problems. A key approach is using Chain of Thought (CoT) (Wei et al., 2024), where LLMs break down the solution into a series of reasoning steps before arriving at the final answer.


MIT-10M: A Large Scale Parallel Corpus of Multilingual Image Translation

arXiv.org Artificial Intelligence

Image Translation (IT) holds immense potential across diverse domains, enabling the translation of textual content within images into various languages. However, existing datasets often suffer from limitations in scale, diversity, and quality, hindering the development and evaluation of IT models. To address this issue, we introduce MIT-10M, a large-scale parallel corpus of multilingual image translation with over 10M image-text pairs derived from real-world data, which has undergone extensive data cleaning and multilingual translation validation. It contains 840K images in three sizes, 28 categories, tasks with three levels of difficulty and 14 languages image-text pairs, which is a considerable improvement on existing datasets. We conduct extensive experiments to evaluate and train models on MIT-10M. The experimental results clearly indicate that our dataset has higher adaptability when it comes to evaluating the performance of the models in tackling challenging and complex image translation tasks in the real world. Moreover, the performance of the model fine-tuned with MIT-10M has tripled compared to the baseline model, further confirming its superiority.


ICT: Image-Object Cross-Level Trusted Intervention for Mitigating Object Hallucination in Large Vision-Language Models

arXiv.org Artificial Intelligence

Despite the recent breakthroughs achieved by Large Vision Language Models (LVLMs) in understanding and responding to complex visual-textual contexts, their inherent hallucination tendencies limit their practical application in real-world scenarios that demand high levels of precision. Existing methods typically either fine-tune the LVLMs using additional data, which incurs extra costs in manual annotation and computational resources or perform comparisons at the decoding stage, which may eliminate useful language priors for reasoning while introducing inference time overhead. Therefore, we propose ICT, a lightweight, training-free method that calculates an intervention direction to shift the model's focus towards different levels of visual information, enhancing its attention to high-level and fine-grained visual details. During the forward pass stage, the intervention is applied to the attention heads that encode the overall image information and the fine-grained object details, effectively mitigating the phenomenon of overly language priors, and thereby alleviating hallucinations. Extensive experiments demonstrate that ICT achieves strong performance with a small amount of data and generalizes well across different datasets and models. Our code will be public.


C$^{2}$INet: Realizing Incremental Trajectory Prediction with Prior-Aware Continual Causal Intervention

arXiv.org Artificial Intelligence

Trajectory prediction for multi-agents in complex scenarios is crucial for applications like autonomous driving. However, existing methods often overlook environmental biases, which leads to poor generalization. Additionally, hardware constraints limit the use of large-scale data across environments, and continual learning settings exacerbate the challenge of catastrophic forgetting. To address these issues, we propose the Continual Causal Intervention (C$^{2}$INet) method for generalizable multi-agent trajectory prediction within a continual learning framework. Using variational inference, we align environment-related prior with posterior estimator of confounding factors in the latent space, thereby intervening in causal correlations that affect trajectory representation. Furthermore, we store optimal variational priors across various scenarios using a memory queue, ensuring continuous debiasing during incremental task training. The proposed C$^{2}$INet enhances adaptability to diverse tasks while preserving previous task information to prevent catastrophic forgetting. It also incorporates pruning strategies to mitigate overfitting. Comparative evaluations on three real and synthetic complex datasets against state-of-the-art methods demonstrate that our proposed method consistently achieves reliable prediction performance, effectively mitigating confounding factors unique to different scenarios. This highlights the practical value of our method for real-world applications.


TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.


ROME: Memorization Insights from Text, Logits and Representation

arXiv.org Artificial Intelligence

Previous works have evaluated memorization by comparing model outputs with training corpora, examining how factors such as data duplication, model size, and prompt length influence memorization. However, analyzing these extensive training corpora is highly time-consuming. To address this challenge, this paper proposes an innovative approach named ROME that bypasses direct processing of the training data. Specifically, we select datasets categorized into three distinct types -- context-independent, conventional, and factual -- and redefine memorization as the ability to produce correct answers under these conditions. Our analysis then focuses on disparities between memorized and non-memorized samples by examining the logits and representations of generated texts. Experimental findings reveal that longer words are less likely to be memorized, higher confidence correlates with greater memorization, and representations of the same concepts are more similar across different contexts. Our code and data will be publicly available when the paper is accepted.