Wen, Lijie
Prompt Me Up: Unleashing the Power of Alignments for Multimodal Entity and Relation Extraction
Hu, Xuming, Chen, Junzhe, Liu, Aiwei, Meng, Shiao, Wen, Lijie, Yu, Philip S.
How can we better extract entities and relations from text? Using multimodal extraction with images and text obtains more signals for entities and relations, and aligns them through graphs or hierarchical fusion, aiding in extraction. Despite attempts at various fusions, previous works have overlooked many unlabeled image-caption pairs, such as NewsCLIPing. This paper proposes innovative pre-training objectives for entity-object and relation-image alignment, extracting objects from images and aligning them with entity and relation prompts for soft pseudo-labels. These labels are used as self-supervised signals for pre-training, enhancing the ability to extract entities and relations. Experiments on three datasets show an average 3.41% F1 improvement over prior SOTA. Additionally, our method is orthogonal to previous multimodal fusions, and using it on prior SOTA fusions further improves 5.47% F1.
RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot Document-Level Relation Extraction
Meng, Shiao, Hu, Xuming, Liu, Aiwei, Li, Shu'ang, Ma, Fukun, Yang, Yawen, Wen, Lijie
How to identify semantic relations among entities in a document when only a few labeled documents are available? Few-shot document-level relation extraction (FSDLRE) is crucial for addressing the pervasive data scarcity problem in real-world scenarios. Metric-based meta-learning is an effective framework widely adopted for FSDLRE, which constructs class prototypes for classification. However, existing works often struggle to obtain class prototypes with accurate relational semantics: 1) To build prototype for a target relation type, they aggregate the representations of all entity pairs holding that relation, while these entity pairs may also hold other relations, thus disturbing the prototype. 2) They use a set of generic NOTA (none-of-the-above) prototypes across all tasks, neglecting that the NOTA semantics differs in tasks with different target relation types. In this paper, we propose a relation-aware prototype learning method for FSDLRE to strengthen the relational semantics of prototype representations. By judiciously leveraging the relation descriptions and realistic NOTA instances as guidance, our method effectively refines the relation prototypes and generates task-specific NOTA prototypes. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches by average 2.61% $F_1$ across various settings of two FSDLRE benchmarks.
A Semantic Invariant Robust Watermark for Large Language Models
Liu, Aiwei, Pan, Leyi, Hu, Xuming, Meng, Shiao, Wen, Lijie
Watermark algorithms for large language models (LLMs) have achieved extremely high accuracy in detecting text generated by LLMs. Such algorithms typically involve adding extra watermark logits to the LLM's logits at each generation step. However, prior algorithms face a trade-off between attack robustness and security robustness. This is because the watermark logits for a token are determined by a certain number of preceding tokens; a small number leads to low security robustness, while a large number results in insufficient attack robustness. In this work, we propose a semantic invariant watermarking method for LLMs that provides both attack robustness and security robustness. The watermark logits in our work are determined by the semantics of all preceding tokens. Specifically, we utilize another embedding LLM to generate semantic embeddings for all preceding tokens, and then these semantic embeddings are transformed into the watermark logits through our trained watermark model. Subsequent analyses and experiments demonstrated the attack robustness of our method in semantically invariant settings: synonym substitution and text paraphrasing settings. Finally, we also show that our watermark possesses adequate security robustness. As the quality of text generated by large language models (LLMs) continues to improve, it addresses a multitude of practical challenges on one hand, while simultaneously giving rise to a spectrum of new issues on the other. Therefore, the detection and labeling of machine-generated text have become extremely important. Text watermarking techniques for LLMs usually embed specific information during text generation to allow high-accuracy detection of LLM-generated text. The mainstream approach for embedding such information is to add extra watermark logits on top of the logits generated by the LLM. For example, Kirchenbauer et al. (2023) divide the vocabulary into red and green lists and increase the scores for the green tokens as the watermark logits.
Do Large Language Models Know about Facts?
Hu, Xuming, Chen, Junzhe, Li, Xiaochuan, Guo, Yufei, Wen, Lijie, Yu, Philip S., Guo, Zhijiang
Large language models (LLMs) have recently driven striking performance improvements across a range of natural language processing tasks. The factual knowledge acquired during pretraining and instruction tuning can be useful in various downstream tasks, such as question answering, and language generation. Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowledge, LLMs implicitly store facts in their parameters. Content generated by the LLMs can often exhibit inaccuracies or deviations from the truth, due to facts that can be incorrectly induced or become obsolete over time. To this end, we aim to comprehensively evaluate the extent and scope of factual knowledge within LLMs by designing the benchmark Pinocchio. Pinocchio contains 20K diverse factual questions that span different sources, timelines, domains, regions, and languages. Furthermore, we investigate whether LLMs are able to compose multiple facts, update factual knowledge temporally, reason over multiple pieces of facts, identify subtle factual differences, and resist adversarial examples. Extensive experiments on different sizes and types of LLMs show that existing LLMs still lack factual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing trustworthy artificial intelligence. The dataset Pinocchio and our codes will be publicly available.
Exploring the Compositional Generalization in Context Dependent Text-to-SQL Parsing
Liu, Aiwei, Liu, Wei, Hu, Xuming, Li, Shuang, Ma, Fukun, Yang, Yawen, Wen, Lijie
In the context-dependent Text-to-SQL task, the generated SQL statements are refined iteratively based on the user input utterance from each interaction. The input text from each interaction can be viewed as component modifications to the previous SQL statements, which could be further extracted as the modification patterns. Since these modification patterns could also be combined with other SQL statements, the models are supposed to have the compositional generalization to these novel combinations. This work is the first exploration of compositional generalization in context-dependent Text-to-SQL scenarios. To facilitate related studies, we constructed two challenging benchmarks named \textsc{CoSQL-CG} and \textsc{SParC-CG} by recombining the modification patterns and existing SQL statements. The following experiments show that all current models struggle on our proposed benchmarks. Furthermore, we found that better aligning the previous SQL statements with the input utterance could give models better compositional generalization ability. Based on these observations, we propose a method named \texttt{p-align} to improve the compositional generalization of Text-to-SQL models. Further experiments validate the effectiveness of our method. Source code and data are available.
Entity-to-Text based Data Augmentation for various Named Entity Recognition Tasks
Hu, Xuming, Jiang, Yong, Liu, Aiwei, Huang, Zhongqiang, Xie, Pengjun, Huang, Fei, Wen, Lijie, Yu, Philip S.
Data augmentation techniques have been used to alleviate the problem of scarce labeled data in various NER tasks (flat, nested, and discontinuous NER tasks). Existing augmentation techniques either manipulate the words in the original text that break the semantic coherence of the text, or exploit generative models that ignore preserving entities in the original text, which impedes the use of augmentation techniques on nested and discontinuous NER tasks. In this work, we propose a novel Entity-to-Text based data augmentation technique named EnTDA to add, delete, replace or swap entities in the entity list of the original texts, and adopt these augmented entity lists to generate semantically coherent and entity preserving texts for various NER tasks. Furthermore, we introduce a diversity beam search to increase the diversity during the text generation process. Experiments on thirteen NER datasets across three tasks (flat, nested, and discontinuous NER tasks) and two settings (full data and low resource settings) show that EnTDA could bring more performance improvements compared to the baseline augmentation techniques.
Give Me More Details: Improving Fact-Checking with Latent Retrieval
Hu, Xuming, Guo, Zhijiang, Wu, Guanyu, Wen, Lijie, Yu, Philip S.
Evidence plays a crucial role in automated fact-checking. When verifying real-world claims, existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine. Such methods ignore the challenges of collecting evidence and may not provide sufficient information to verify real-world claims. Aiming at building a better fact-checking system, we propose to incorporate full text from source documents as evidence and introduce two enriched datasets. The first one is a multilingual dataset, while the second one is monolingual (English). We further develop a latent variable model to jointly extract evidence sentences from documents and perform claim verification. Experiments indicate that including source documents can provide sufficient contextual clues even when gold evidence sentences are not annotated. The proposed system is able to achieve significant improvements upon best-reported models under different settings.
Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer
Li, Shuang, Hu, Xuming, Liu, Aiwei, Yang, Yawen, Ma, Fukun, Yu, Philip S., Wen, Lijie
Cross-lingual natural language inference is a fundamental problem in cross-lingual language understanding. Many recent works have used prompt learning to address the lack of annotated parallel corpora in XNLI. However, these methods adopt discrete prompting by simply translating the templates to the target language and need external expert knowledge to design the templates. Besides, discrete prompts of human-designed template words are not trainable vectors and can not be migrated to target languages in the inference stage flexibly. In this paper, we propose a novel Soft prompt learning framework with the Multilingual Verbalizer (SoftMV) for XNLI. SoftMV first constructs cloze-style question with soft prompts for the input sample. Then we leverage bilingual dictionaries to generate an augmented multilingual question for the original question. SoftMV adopts a multilingual verbalizer to align the representations of original and augmented multilingual questions into the same semantic space with consistency regularization. Experimental results on XNLI demonstrate that SoftMV can achieve state-of-the-art performance and significantly outperform the previous methods under the few-shot and full-shot cross-lingual transfer settings.
Gaussian Prior Reinforcement Learning for Nested Named Entity Recognition
Yang, Yawen, Hu, Xuming, Ma, Fukun, Li, Shu'ang, Liu, Aiwei, Wen, Lijie, Yu, Philip S.
Named Entity Recognition (NER) is a well and widely studied task in natural language processing. Recently, the nested NER has attracted more attention since its practicality and difficulty. Existing works for nested NER ignore the recognition order and boundary position relation of nested entities. To address these issues, we propose a novel seq2seq model named GPRL, which formulates the nested NER task as an entity triplet sequence generation process. GPRL adopts the reinforcement learning method to generate entity triplets decoupling the entity order in gold labels and expects to learn a reasonable recognition order of entities via trial and error. Based on statistics of boundary distance for nested entities, GPRL designs a Gaussian prior to represent the boundary distance distribution between nested entities and adjust the output probability distribution of nested boundary tokens. Experiments on three nested NER datasets demonstrate that GPRL outperforms previous nested NER models.
Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence
Hu, Xuming, Hong, Zhaochen, Guo, Zhijiang, Wen, Lijie, Yu, Philip S.
Real-world fact verification task aims to verify the factuality of a claim by retrieving evidence from the source document. The quality of the retrieved evidence plays an important role in claim verification. Ideally, the retrieved evidence should be faithful (reflecting the model's decision-making process in claim verification) and plausible (convincing to humans), and can improve the accuracy of verification task. Although existing approaches leverage the similarity measure of semantic or surface form between claims and documents to retrieve evidence, they all rely on certain heuristics that prevent them from satisfying all three requirements. In light of this, we propose a fact verification model named ReRead to retrieve evidence and verify claim that: (1) Train the evidence retriever to obtain interpretable evidence (i.e., faithfulness and plausibility criteria); (2) Train the claim verifier to revisit the evidence retrieved by the optimized evidence retriever to improve the accuracy. The proposed system is able to achieve significant improvements upon best-reported models under different settings.