Goto

Collaborating Authors

 Weller, Adrian


Simplex Random Features

arXiv.org Machine Learning

We present Simplex Random Features (SimRFs), a new random feature (RF) mechanism for unbiased approximation of the softmax and Gaussian kernels by geometrical correlation of random projection vectors. We prove that SimRFs provide the smallest possible mean square error (MSE) on unbiased estimates of these kernels among the class of weight-independent geometrically-coupled positive random feature (PRF) mechanisms, substantially outperforming the previously most accurate Orthogonal Random Features at no observable extra cost. We present a more computationally expensive SimRFs+ variant, which we prove is asymptotically optimal in the broader family of weight-dependent geometrical coupling schemes (which permit correlations between random vector directions and norms). In extensive empirical studies, we show consistent gains provided by SimRFs in settings including pointwise kernel estimation, nonparametric classification and scalable Transformers.


Repelling Random Walks

arXiv.org Machine Learning

We present a novel quasi-Monte Carlo mechanism to improve graph-based sampling, coined repelling random walks. By inducing correlations between the trajectories of an interacting ensemble such that their marginal transition probabilities are unmodified, we are able to explore the graph more efficiently, improving the concentration of statistical estimators whilst leaving them unbiased. The mechanism has a trivial drop-in implementation. We showcase the effectiveness of repelling random walks in a range of settings including estimation of graph kernels, the PageRank vector and graphlet concentrations. We provide detailed experimental evaluation and robust theoretical guarantees. To our knowledge, repelling random walks constitute the first rigorously studied quasi-Monte Carlo scheme correlating the directions of walkers on a graph, inviting new research in this exciting nascent domain.


Efficient Graph Field Integrators Meet Point Clouds

arXiv.org Artificial Intelligence

We present two new classes of algorithms for efficient field integration on graphs encoding point clouds. The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g., shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (particularly for mesh-dynamics modeling), Wasserstein distance computations for point clouds, and the Gromov-Wasserstein variant.


Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey

arXiv.org Artificial Intelligence

Rapid advancements in language models (LMs) have led to their adoption across many sectors. Alongside the potential benefits, such models present a range of risks, including around privacy. In particular, as LMs have grown in size, the potential to memorise aspects of their training data has increased, resulting in the risk of leaking private information. As LMs become increasingly widespread, it is vital that we understand such privacy risks and how they might be mitigated. To help researchers and policymakers understand the state of knowledge around privacy attacks and mitigations, including where more work is needed, we present the first technical survey on LM privacy. We (i) identify a taxonomy of salient dimensions where attacks differ on LMs, (ii) survey existing attacks and use our taxonomy of dimensions to highlight key trends, (iii) discuss existing mitigation strategies, highlighting their strengths and limitations, identifying key gaps and demonstrating open problems and areas for concern.


The Future of Fundamental Science Led by Generative Closed-Loop Artificial Intelligence

arXiv.org Artificial Intelligence

Recent advances in machine learning and AI, including Generative AI and LLMs, are disrupting technological innovation, product development, and society as a whole. AI's contribution to technology can come from multiple approaches that require access to large training data sets and clear performance evaluation criteria, ranging from pattern recognition and classification to generative models. Yet, AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access. Generative AI, in general, and Large Language Models in particular, may represent an opportunity to augment and accelerate the scientific discovery of fundamental deep science with quantitative models. Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery, including self-driven hypothesis generation and open-ended autonomous exploration of the hypothesis space. Integrating AI-driven automation into the practice of science would mitigate current problems, including the replication of findings, systematic production of data, and ultimately democratisation of the scientific process. Realising these possibilities requires a vision for augmented AI coupled with a diversity of AI approaches able to deal with fundamental aspects of causality analysis and model discovery while enabling unbiased search across the space of putative explanations. These advances hold the promise to unleash AI's potential for searching and discovering the fundamental structure of our world beyond what human scientists have been able to achieve. Such a vision would push the boundaries of new fundamental science rather than automatize current workflows and instead open doors for technological innovation to tackle some of the greatest challenges facing humanity today.


Human-in-the-Loop Mixup

arXiv.org Artificial Intelligence

Aligning model representations to humans has been found to improve robustness and generalization. However, such methods often focus on standard observational data. Synthetic data is proliferating and powering many advances in machine learning; yet, it is not always clear whether synthetic labels are perceptually aligned to humans -- rendering it likely model representations are not human aligned. We focus on the synthetic data used in mixup: a powerful regularizer shown to improve model robustness, generalization, and calibration. We design a comprehensive series of elicitation interfaces, which we release as HILL MixE Suite, and recruit 159 participants to provide perceptual judgments along with their uncertainties, over mixup examples. We find that human perceptions do not consistently align with the labels traditionally used for synthetic points, and begin to demonstrate the applicability of these findings to potentially increase the reliability of downstream models, particularly when incorporating human uncertainty. We release all elicited judgments in a new data hub we call H-Mix.


FeedbackLogs: Recording and Incorporating Stakeholder Feedback into Machine Learning Pipelines

arXiv.org Artificial Intelligence

Even though machine learning (ML) pipelines affect an increasing array of stakeholders, there is little work on how input from stakeholders is recorded and incorporated. We propose FeedbackLogs, addenda to existing documentation of ML pipelines, to track the input of multiple stakeholders. Each log records important details about the feedback collection process, the feedback itself, and how the feedback is used to update the ML pipeline. In this paper, we introduce and formalise a process for collecting a FeedbackLog. We also provide concrete use cases where FeedbackLogs can be employed as evidence for algorithmic auditing and as a tool to record updates based on stakeholder feedback.


On the Informativeness of Supervision Signals

arXiv.org Artificial Intelligence

Supervised learning typically focuses on learning transferable representations from training examples annotated by humans. While rich annotations (like soft labels) carry more information than sparse annotations (like hard labels), they are also more expensive to collect. For example, while hard labels only provide information about the closest class an object belongs to (e.g., "this is a dog"), soft labels provide information about the object's relationship with multiple classes (e.g., "this is most likely a dog, but it could also be a wolf or a coyote"). We use information theory to compare how a number of commonly-used supervision signals contribute to representation-learning performance, as well as how their capacity is affected by factors such as the number of labels, classes, dimensions, and noise. Our framework provides theoretical justification for using hard labels in the big-data regime, but richer supervision signals for few-shot learning and out-of-distribution generalization. We validate these results empirically in a series of experiments with over 1 million crowdsourced image annotations and conduct a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of supervising representation learning on their own datasets.


The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling Probabilistic Social Inferences from Linguistic Inputs

arXiv.org Artificial Intelligence

Human beings are social creatures. We routinely reason about other agents, and a crucial component of this social reasoning is inferring people's goals as we learn about their actions. In many settings, we can perform intuitive but reliable goal inference from language descriptions of agents, actions, and the background environments. In this paper, we study this process of language driving and influencing social reasoning in a probabilistic goal inference domain. We propose a neuro-symbolic model that carries out goal inference from linguistic inputs of agent scenarios. The "neuro" part is a large language model (LLM) that translates language descriptions to code representations, and the "symbolic" part is a Bayesian inverse planning engine. To test our model, we design and run a human experiment on a linguistic goal inference task. Our model closely matches human response patterns and better predicts human judgements than using an LLM alone.


Selective Concept Models: Permitting Stakeholder Customisation at Test-Time

arXiv.org Artificial Intelligence

Concept-based models perform prediction using a set of concepts that are interpretable to stakeholders. However, such models often involve a fixed, large number of concepts, which may place a substantial cognitive load on stakeholders. We propose Selective COncept Models (SCOMs) which make predictions using only a subset of concepts and can be customised by stakeholders at test-time according to their preferences. We show that SCOMs only require a fraction of the total concepts to achieve optimal accuracy on multiple real-world datasets. Further, we collect and release a new dataset, CUB-Sel, consisting of human concept set selections for 900 bird images from the popular CUB dataset. Using CUB-Sel, we show that humans have unique individual preferences for the choice of concepts they prefer to reason about, and struggle to identify the most theoretically informative concepts. The customisation and concept selection provided by SCOM improves the efficiency of interpretation and intervention for stakeholders.