Goto

Collaborating Authors

 Weiss, Gerhard


A Neural Attention Model for Adaptive Learning of Social Friends' Preferences

arXiv.org Machine Learning

Social-based recommendation systems exploit the selections of friends to combat the data sparsity on user preferences, and improve the recommendation accuracy of the collaborative filtering strategy. The main challenge is to capture and weigh friends' preferences, as in practice they do necessarily match. In this paper, we propose a Neural Attention mechanism for Social collaborative filtering, namely NAS. We design a neural architecture, to carefully compute the non-linearity in friends' preferences by taking into account the social latent effects of friends on user behavior. In addition, we introduce a social behavioral attention mechanism to adaptively weigh the influence of friends on user preferences and consequently generate accurate recommendations. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed NAS model over other state-of-the-art methods. Furthermore, we study the effect of the proposed social behavioral attention mechanism and show that it is a key factor to our model's performance.


Adaptive Deep Learning of Cross-Domain Loss in Collaborative Filtering

arXiv.org Machine Learning

Nowadays, users open multiple accounts on social media platforms and e-commerce sites, expressing their personal preferences on different domains. However, users' behaviors change across domains, depending on the content that users interact with, such as movies, music, clothing and retail products. In this paper, we propose an adaptive deep learning strategy for cross-domain recommendation, referred to as ADC. We design a neural architecture and formulate a cross-domain loss function, to compute the non-linearity in user preferences across domains and transfer the knowledge of users' multiple behaviors, accordingly. In addition, we introduce an efficient algorithm for cross-domain loss balancing which directly tunes gradient magnitudes and adapts the learning rates based on the domains' complexities/scales when training the model via backpropagation. In doing so, ADC controls and adjusts the contribution of each domain when optimizing the model parameters. Our experiments on six publicly available cross-domain recommendation tasks demonstrate the effectiveness of the proposed ADC model over other state-of-the-art methods. Furthermore, we study the effect of the proposed adaptive deep learning strategy and show that ADC can well balance the impact of the domains with different complexities.


An Automated Measure of MDP Similarity for Transfer in Reinforcement Learning

AAAI Conferences

Transfer learning can improve the reinforcement learning of a new task by allowing the agent to reuse knowledge acquired from other source tasks. Despite their success, transfer learning methods rely on having relevant source tasks; transfer from inappropriate tasks can inhibit performance on the new task. For fully autonomous transfer, it is critical to have a method for automatically choosing relevant source tasks, which requires a similarity measure between Markov Decision Processes (MDPs). This issue has received little attention, and is therefore still a largely open problem. This paper presents a data-driven automated similarity measure for MDPs. This novel measure is a significant step toward autonomous reinforcement learning transfer, allowing agents to: (1) characterize when transfer will be useful and, (2) automatically select tasks to use for transfer. The proposed measure is based on the reconstruction error of a restricted Boltzmann machine that attempts to model the behavioral dynamics of the two MDPs being compared. Empirical results illustrate that this measure is correlated with the performance of transfer and therefore can be used to identify similar source tasks for transfer learning.


Theory of Cooperation in Complex Social Networks

AAAI Conferences

This paper presents a theoretical as well as empirical study on the evolution of cooperation on complex social networks, following the continuous action iterated prisoner's dilemma (CAIPD) model. In particular, convergence to network-wide agreement is proven for both evolutionary networks with fixed interaction dynamics, as well as for coevolutionary networks where these dynamics change over time. Moreover, an extension to the CAIPD model is proposed that allows to model influence on the evolution of cooperation in social networks. As such, this work contributes to a better understanding of behavioral change on social networks, and provides a first step towards their active control.


Conditional Restricted Boltzmann Machines for Negotiations in Highly Competitive and Complex Domains

AAAI Conferences

Learning in automated negotiations, while useful, is hard because of the indirect way the target function can be observed and the limited amount of experience available to learn from. This paper proposes two novel opponent modeling techniques based on deep learning methods. Moreover, to improve the learning efficacy of negotiating agents, the second approach is also capable of transferring knowledge efficiently between negotiation tasks. Transfer is conducted by automatically mapping the source knowledge to the target in a rich feature space. Experiments show that using these techniques the proposed strategies outperform existing state-of-the-art agents in highly competitive and complex negotiation domains. Furthermore, the empirical game theoretic analysis reveals the robustness of the proposed strategies.


Multiagent Learning: Basics, Challenges, and Prospects

AI Magazine

Multiagent systems (MAS) are widely accepted as an important method for solving problems of a distributed nature. A key to the success of MAS is efficient and effective multiagent learning (MAL). The past twenty-five years have seen a great interest and tremendous progress in the field of MAL. This article introduces and overviews this field by presenting its fundamentals, sketching its historical development and describing some key algorithms for MAL.


Multiagent Learning: Basics, Challenges, and Prospects

AI Magazine

Multiagent systems (MAS) are widely accepted as an important method for solving problems of a distributed nature. A key to the success of MAS is efficient and effective multiagent learning (MAL). The past twenty-five years have seen a great interest and tremendous progress in the field of MAL. This article introduces and overviews this field by presenting its fundamentals, sketching its historical development and describing some key algorithms for MAL. Moreover, main challenges that the field is facing today are indentified.