Goto

Collaborating Authors

 Weimer, James


Curating Naturally Adversarial Datasets for Learning-Enabled Medical Cyber-Physical Systems

arXiv.org Artificial Intelligence

Deep learning models have shown promising predictive accuracy for time-series healthcare applications. However, ensuring the robustness of these models is vital for building trustworthy AI systems. Existing research predominantly focuses on robustness to synthetic adversarial examples, crafted by adding imperceptible perturbations to clean input data. However, these synthetic adversarial examples do not accurately reflect the most challenging real-world scenarios, especially in the context of healthcare data. Consequently, robustness to synthetic adversarial examples may not necessarily translate to robustness against naturally occurring adversarial examples, which is highly desirable for trustworthy AI. We propose a method to curate datasets comprised of natural adversarial examples to evaluate model robustness. The method relies on probabilistic labels obtained from automated weakly-supervised labeling that combines noisy and cheap-to-obtain labeling heuristics. Based on these labels, our method adversarially orders the input data and uses this ordering to construct a sequence of increasingly adversarial datasets. Our evaluation on six medical case studies and three non-medical case studies demonstrates the efficacy and statistical validity of our approach to generating naturally adversarial datasets


Guaranteed Conformance of Neurosymbolic Models to Natural Constraints

arXiv.org Artificial Intelligence

Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. They are particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model. For instance, an F1 racing car should conform to Newton's laws (which are encoded within a unicycle model). In this light, we consider the following problem - given a model $M$ and a state transition dataset, we wish to best approximate the system model while being a bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into a few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network in each subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to a bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods. Our code can be found at: https://github.com/kaustubhsridhar/Constrained_Models


Memory-Consistent Neural Networks for Imitation Learning

arXiv.org Artificial Intelligence

Imitation learning considerably simplifies policy synthesis compared to alternative approaches by exploiting access to expert demonstrations. For such imitation policies, errors away from the training samples are particularly critical. Even rare slip-ups in the policy action outputs can compound quickly over time, since they lead to unfamiliar future states where the policy is still more likely to err, eventually causing task failures. We revisit simple supervised ``behavior cloning'' for conveniently training the policy from nothing more than pre-recorded demonstrations, but carefully design the model class to counter the compounding error phenomenon. Our ``memory-consistent neural network'' (MCNN) outputs are hard-constrained to stay within clearly specified permissible regions anchored to prototypical ``memory'' training samples. We provide a guaranteed upper bound for the sub-optimality gap induced by MCNN policies. Using MCNNs on 9 imitation learning tasks, with MLP, Transformer, and Diffusion backbones, spanning dexterous robotic manipulation and driving, proprioceptive inputs and visual inputs, and varying sizes and types of demonstration data, we find large and consistent gains in performance, validating that MCNNs are better-suited than vanilla deep neural networks for imitation learning applications. Website: https://sites.google.com/view/mcnn-imitation


Detection of Adversarial Physical Attacks in Time-Series Image Data

arXiv.org Artificial Intelligence

Deep neural networks (DNN) have become a common sensing modality in autonomous systems as they allow for semantically perceiving the ambient environment given input images. Nevertheless, DNN models have proven to be vulnerable to adversarial digital and physical attacks. To mitigate this issue, several detection frameworks have been proposed to detect whether a single input image has been manipulated by adversarial digital noise or not. In our prior work, we proposed a real-time detector, called VisionGuard (VG), for adversarial physical attacks against single input images to DNN models. Building upon that work, we propose VisionGuard* (VG), which couples VG with majority-vote methods, to detect adversarial physical attacks in time-series image data, e.g., videos. This is motivated by autonomous systems applications where images are collected over time using onboard sensors for decision-making purposes. We emphasize that majority-vote mechanisms are quite common in autonomous system applications (among many other applications), as e.g., in autonomous driving stacks for object detection. In this paper, we investigate, both theoretically and experimentally, how this widely used mechanism can be leveraged to enhance the performance of adversarial detectors. We have evaluated VG* on videos of both clean and physically attacked traffic signs generated by a state-of-the-art robust physical attack. We provide extensive comparative experiments against detectors that have been designed originally for out-of-distribution data and digitally attacked images.


Robust Learning via Persistency of Excitation

arXiv.org Machine Learning

Improving adversarial robustness of neural networks remains a major challenge. Fundamentally, training a network is a parameter estimation problem. In adaptive control theory, maintaining persistency of excitation (PoE) is integral to ensuring convergence of parameter estimates in dynamical systems to their robust optima. In this work, we show that network training using gradient descent is equivalent to a dynamical system parameter estimation problem. Leveraging this relationship, we prove a sufficient condition for PoE of gradient descent is achieved when the learning rate is less than the inverse of the Lipschitz constant of the gradient of loss function. We provide an efficient technique for estimating the corresponding Lipschitz constant using extreme value theory and demonstrate that by only scaling the learning rate schedule we can increase adversarial accuracy by up to 15% points on benchmark datasets. Our approach also universally increases the adversarial accuracy by 0.1% to 0.3% points in various state-of-the-art adversarially trained models on the AutoAttack benchmark, where every small margin of improvement is significant.