Well File:

 Weijie Su


Acceleration via Symplectic Discretization of High-Resolution Differential Equations

Neural Information Processing Systems

We study first-order optimization algorithms obtained by discretizing ordinary differential equations (ODEs) corresponding to Nesterov's accelerated gradient methods (NAGs) and Polyak's heavy-ball method. We consider three discretization schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes. We show that the optimization algorithm generated by applying the symplectic scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accelerated rate for minimizing both strongly convex functions and convex functions. On the other hand, the resulting algorithm either fails to achieve acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is explicit.


Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing

Neural Information Processing Systems

In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates.


Acceleration via Symplectic Discretization of High-Resolution Differential Equations

Neural Information Processing Systems

We study first-order optimization algorithms obtained by discretizing ordinary differential equations (ODEs) corresponding to Nesterov's accelerated gradient methods (NAGs) and Polyak's heavy-ball method. We consider three discretization schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes. We show that the optimization algorithm generated by applying the symplectic scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accelerated rate for minimizing both strongly convex functions and convex functions. On the other hand, the resulting algorithm either fails to achieve acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is explicit.


Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing

Neural Information Processing Systems

In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates.