Wei Zhang
Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks
Xiaodong Cui, Wei Zhang, Zoltán Tüske, Michael Picheny
We propose a population-based Evolutionary Stochastic Gradient Descent (ESGD) framework for optimizing deep neural networks. ESGD combines SGD and gradient-free evolutionary algorithms as complementary algorithms in one framework in which the optimization alternates between the SGD step and evolution step to improve the average fitness of the population. With a back-off strategy in the SGD step and an elitist strategy in the evolution step, it guarantees that the best fitness in the population will never degrade. In addition, individuals in the population optimized with various SGD-based optimizers using distinct hyperparameters in the SGD step are considered as competing species in a coevolution setting such that the complementarity of the optimizers is also taken into account. The effectiveness of ESGD is demonstrated across multiple applications including speech recognition, image recognition and language modeling, using networks with a variety of deep architectures.
Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks
Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, Kailash Gopalakrishnan
Reducing the numerical precision of data and computation is extremely effective in accelerating deep learning training workloads. Towards this end, 8-bit floating point representations (FP8) were recently proposed for DNN training. However, its applicability was only demonstrated on a few selected models and significant degradation is observed when popular networks such as MobileNet and Transformer are trained using FP8. This degradation is due to the inherent precision requirement difference in the forward and backward passes of DNN training. Using theoretical insights, we propose a hybrid FP8 (HFP8) format and DNN end-to-end distributed training procedure. We demonstrate, using HFP8, the successful training of deep learning models across a whole spectrum of applications including Image Classification, Object Detection, Language and Speech without accuracy degradation. Finally, we demonstrate that, by using the new 8 bit format, we can directly quantize a pre-trained model down to 8-bits without losing accuracy by simply fine-tuning batch normalization statistics. These novel techniques enable a new generations of 8-bit hardware that are robust for building and deploying neural network models.
Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks
Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, Kailash Gopalakrishnan
Reducing the numerical precision of data and computation is extremely effective in accelerating deep learning training workloads. Towards this end, 8-bit floating point representations (FP8) were recently proposed for DNN training. However, its applicability was only demonstrated on a few selected models and significant degradation is observed when popular networks such as MobileNet and Transformer are trained using FP8. This degradation is due to the inherent precision requirement difference in the forward and backward passes of DNN training. Using theoretical insights, we propose a hybrid FP8 (HFP8) format and DNN end-to-end distributed training procedure. We demonstrate, using HFP8, the successful training of deep learning models across a whole spectrum of applications including Image Classification, Object Detection, Language and Speech without accuracy degradation. Finally, we demonstrate that, by using the new 8 bit format, we can directly quantize a pre-trained model down to 8-bits without losing accuracy by simply fine-tuning batch normalization statistics. These novel techniques enable a new generations of 8-bit hardware that are robust for building and deploying neural network models.
Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks
Xiaodong Cui, Wei Zhang, Zoltán Tüske, Michael Picheny
We propose a population-based Evolutionary Stochastic Gradient Descent (ESGD) framework for optimizing deep neural networks. ESGD combines SGD and gradient-free evolutionary algorithms as complementary algorithms in one framework in which the optimization alternates between the SGD step and evolution step to improve the average fitness of the population. With a back-off strategy in the SGD step and an elitist strategy in the evolution step, it guarantees that the best fitness in the population will never degrade. In addition, individuals in the population optimized with various SGD-based optimizers using distinct hyperparameters in the SGD step are considered as competing species in a coevolution setting such that the complementarity of the optimizers is also taken into account. The effectiveness of ESGD is demonstrated across multiple applications including speech recognition, image recognition and language modeling, using networks with a variety of deep architectures.
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu
Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built in a centralized fashion. One bottleneck of centralized algorithms lies on high communication cost on the central node. Motivated by this, we ask, can decentralized algorithms be faster than its centralized counterpart? Although decentralized PSGD (D-PSGD) algorithms have been studied by the control community, existing analysis and theory do not show any advantage over centralized PSGD (C-PSGD) algorithms, simply assuming the application scenario where only the decentralized network is available. In this paper, we study a D-PSGD algorithm and provide the first theoretical analysis that indicates a regime in which decentralized algorithms might outperform centralized algorithms for distributed stochastic gradient descent. This is because D-PSGD has comparable total computational complexities to C-PSGD but requires much less communication cost on the busiest node.