Goto

Collaborating Authors

 Wei, Zihao


ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models

arXiv.org Artificial Intelligence

Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools. Existing approaches face significant challenges, including reliance on hand-crafted prompts, difficulty in multi-step planning, and lack of precise error diagnosis and reflection mechanisms. We propose ToolCoder, a novel framework that reformulates tool learning as a code generation task. Inspired by software engineering principles, ToolCoder transforms natural language queries into structured Python function scaffold and systematically breaks down tasks with descriptive comments, enabling LLMs to leverage coding paradigms for complex reasoning and planning. It then generates and executes function implementations to obtain final responses. Additionally, ToolCoder stores successfully executed functions in a repository to promote code reuse, while leveraging error traceback mechanisms for systematic debugging, optimizing both execution efficiency and robustness. Experiments demonstrate that ToolCoder achieves superior performance in task completion accuracy and execution reliability compared to existing approaches, establishing the effectiveness of code-centric approaches in tool learning.


Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs?

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) systems often suffer from performance degradation when encountering noisy or irrelevant documents, driving researchers to develop sophisticated training strategies to enhance their robustness against such retrieval noise. However, as large language models (LLMs) continue to advance, the necessity of these complex training methods is increasingly questioned. In this paper, we systematically investigate whether complex robust training strategies remain necessary as model capacity grows. Through comprehensive experiments spanning multiple model architectures and parameter scales, we evaluate various document selection methods and adversarial training techniques across diverse datasets. Our extensive experiments consistently demonstrate that as models become more powerful, the performance gains brought by complex robust training methods drop off dramatically. We delve into the rationale and find that more powerful models inherently exhibit superior confidence calibration, better generalization across datasets (even when trained with randomly selected documents), and optimal attention mechanisms learned with simpler strategies. Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful, enabling more scalable applications with minimal complexity.


Following the Autoregressive Nature of LLM Embeddings via Compression and Alignment

arXiv.org Artificial Intelligence

A new trend uses LLMs as dense text encoders via contrastive learning. However, since LLM embeddings predict the probability distribution of the next token, they are inherently generative and distributive, conflicting with contrastive learning, which requires embeddings to capture full-text semantics and align via cosine similarity. This discrepancy hinders the full utilization of LLMs' pre-training capabilities, resulting in inefficient learning. In response to this issue, we propose AutoRegEmbed, a new contrastive learning method built on embedding conditional probability distributions, which integrates two core tasks: information compression and conditional distribution alignment. The information compression task encodes text into the embedding space, ensuring that the embedding vectors capture global semantics. The conditional distribution alignment task focuses on aligning text embeddings with positive samples embeddings by leveraging the conditional distribution of embeddings while simultaneously reducing the likelihood of generating negative samples from text embeddings, thereby achieving embedding alignment and uniformity. Experimental results demonstrate that our method significantly outperforms traditional contrastive learning approaches and achieves performance comparable to state-of-the-art models when using the same amount of data.


UnKE: Unstructured Knowledge Editing in Large Language Models

arXiv.org Artificial Intelligence

Recent knowledge editing methods have primarily focused on modifying structured knowledge in large language models, heavily relying on the assumption that structured knowledge is stored as key-value pairs locally in MLP layers or specific neurons. However, this task setting overlooks the fact that a significant portion of real-world knowledge is stored in an unstructured format, characterized by long-form content, noise, and a complex yet comprehensive nature. The "knowledge locating" and "term-driven optimization" techniques conducted from the assumption used in previous methods (e.g., MEMIT) are ill-suited for unstructured knowledge. To address these challenges, we propose a novel unstructured knowledge editing method, namely UnKE, which extends previous assumptions in the layer dimension and token dimension. Firstly, in the layer dimension, we discard the "knowledge locating" step and treat first few layers as the key, which expand knowledge storage through layers to break the "knowledge stored locally" assumption. Next, we replace "term-driven optimization" with "cause-driven optimization" across all inputted tokens in the token dimension, directly optimizing the last layer of the key generator to perform editing to generate the required key vectors. By utilizing key-value pairs at the layer level, UnKE effectively represents and edits complex and comprehensive unstructured knowledge, leveraging the potential of both the MLP and attention layers. Results on newly proposed unstructure knowledge editing dataset (UnKEBench) and traditional structured datasets demonstrate that UnKE achieves remarkable performance, surpassing strong baselines.


MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models

arXiv.org Artificial Intelligence

The extensive utilization of large language models (LLMs) underscores the crucial necessity for precise and contemporary knowledge embedded within their intrinsic parameters. Existing research on knowledge editing primarily concentrates on monolingual scenarios, neglecting the complexities presented by multilingual contexts and multi-hop reasoning. To address these challenges, our study introduces MLaKE (Multilingual Language Knowledge Editing), a novel benchmark comprising 4072 multi-hop and 5360 single-hop questions designed to evaluate the adaptability of knowledge editing methods across five languages: English, Chinese, Japanese, French, and German. MLaKE aggregates fact chains from Wikipedia across languages and utilizes LLMs to generate questions in both free-form and multiple-choice. We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE. Existing knowledge editing methods demonstrate higher success rates in English samples compared to other languages. However, their generalization capabilities are limited in multi-language experiments. Notably, existing knowledge editing methods often show relatively high generalization for languages within the same language family compared to languages from different language families. These results underscore the imperative need for advancements in multilingual knowledge editing and we hope MLaKE can serve as a valuable resource for benchmarking and solution development.


Stable Knowledge Editing in Large Language Models

arXiv.org Artificial Intelligence

Efficient knowledge editing of large language models is crucial for replacing obsolete information or incorporating specialized knowledge on a large scale. However, previous methods implicitly assume that knowledge is localized and isolated within the model, an assumption that oversimplifies the interconnected nature of model knowledge. The premise of localization results in an incomplete knowledge editing, whereas an isolated assumption may impair both other knowledge and general abilities. It introduces instability to the performance of the knowledge editing method. To transcend these assumptions, we introduce StableKE, a method adopts a novel perspective based on knowledge augmentation rather than knowledge localization. To overcome the expense of human labeling, StableKE integrates two automated knowledge augmentation strategies: Semantic Paraphrase Enhancement strategy, which diversifies knowledge descriptions to facilitate the teaching of new information to the model, and Contextual Description Enrichment strategy, expanding the surrounding knowledge to prevent the forgetting of related information. StableKE surpasses other knowledge editing methods, demonstrating stability both edited knowledge and multi-hop knowledge, while also preserving unrelated knowledge and general abilities. Moreover, StableKE can edit knowledge on ChatGPT.


Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models

arXiv.org Artificial Intelligence

Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs). The utilization of parametric knowledge in generating factual content is constrained by the limited knowledge of LLMs, potentially resulting in internal hallucinations. While incorporating external information can help fill knowledge gaps, it also introduces the risk of irrelevant information, thereby increasing the likelihood of external hallucinations. A careful and balanced integration of the parametric knowledge within LLMs with external information is crucial to alleviate hallucinations. In this study, we present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinated outputs. This process is governed by a multilingual semantic-aware detection module, which evaluates the consistency of the perturbed responses across various languages for the same queries. Upon detecting inconsistencies indicative of hallucinations, Rowen activates the retrieval of external information to rectify the model outputs. Rowen adeptly harmonizes the intrinsic parameters in LLMs with external knowledge sources, effectively mitigating hallucinations by ensuring a balanced integration of internal reasoning and external evidence. Through a comprehensive empirical analysis, we demonstrate that Rowen surpasses the current state-of-the-art in both detecting and mitigating hallucinated content within the outputs of LLMs.


MacLaSa: Multi-Aspect Controllable Text Generation via Efficient Sampling from Compact Latent Space

arXiv.org Artificial Intelligence

Multi-aspect controllable text generation aims to generate fluent sentences that possess multiple desired attributes simultaneously. Traditional methods either combine many operators in the decoding stage, often with costly iteration or search in the discrete text space, or train separate controllers for each aspect, resulting in a degeneration of text quality due to the discrepancy between different aspects. To address these limitations, we introduce a novel approach for multi-aspect control, namely MacLaSa, that estimates compact latent space for multiple aspects and performs efficient sampling with a robust sampler based on ordinary differential equations (ODEs). To eliminate the domain gaps between different aspects, we utilize a Variational Autoencoder (VAE) network to map text sequences from varying data sources into close latent representations. The estimated latent space enables the formulation of joint energy-based models (EBMs) and the plugging in of arbitrary attribute discriminators to achieve multi-aspect control. Afterwards, we draw latent vector samples with an ODE-based sampler and feed sampled examples to the VAE decoder to produce target text sequences. Experimental results demonstrate that MacLaSa outperforms several strong baselines on attribute relevance and textual quality while maintaining a high inference speed.


TRBoost: A Generic Gradient Boosting Machine based on Trust-region Method

arXiv.org Artificial Intelligence

Gradient Boosting Machines (GBMs) have demonstrated remarkable success in solving diverse problems by utilizing Taylor expansions in functional space. However, achieving a balance between performance and generality has posed a challenge for GBMs. In particular, gradient descent-based GBMs employ the first-order Taylor expansion to ensure applicability to all loss functions, while Newton's method-based GBMs use positive Hessian information to achieve superior performance at the expense of generality. To address this issue, this study proposes a new generic Gradient Boosting Machine called Trust-region Boosting (TRBoost). In each iteration, TRBoost uses a constrained quadratic model to approximate the objective and applies the Trust-region algorithm to solve it and obtain a new learner. Unlike Newton's method-based GBMs, TRBoost does not require the Hessian to be positive definite, thereby allowing it to be applied to arbitrary loss functions while still maintaining competitive performance similar to second-order algorithms. The convergence analysis and numerical experiments conducted in this study confirm that TRBoost is as general as first-order GBMs and yields competitive results compared to second-order GBMs. Overall, TRBoost is a promising approach that balances performance and generality, making it a valuable addition to the toolkit of machine learning practitioners.