Goto

Collaborating Authors

 Wei, Zhiqiang


LR-CNN: Lightweight Row-centric Convolutional Neural Network Training for Memory Reduction

arXiv.org Artificial Intelligence

In the last decade, Convolutional Neural Network with a multi-layer architecture has advanced rapidly. However, training its complex network is very space-consuming, since a lot of intermediate data are preserved across layers, especially when processing high-dimension inputs with a big batch size. That poses great challenges to the limited memory capacity of current accelerators (e.g., GPUs). Existing efforts mitigate such bottleneck by external auxiliary solutions with additional hardware costs, and internal modifications with potential accuracy penalty. Differently, our analysis reveals that computations intra- and inter-layers exhibit the spatial-temporal weak dependency and even complete independency features. That inspires us to break the traditional layer-by-layer (column) dataflow rule. Now operations are novelly re-organized into rows throughout all convolution layers. This lightweight design allows a majority of intermediate data to be removed without any loss of accuracy. We particularly study the weak dependency between two consecutive rows. For the resulting skewed memory consumption, we give two solutions with different favorite scenarios. Evaluations on two representative networks confirm the effectiveness. We also validate that our middle dataflow optimization can be smoothly embraced by existing works for better memory reduction.


Scale-Semantic Joint Decoupling Network for Image-text Retrieval in Remote Sensing

arXiv.org Artificial Intelligence

Image-text retrieval in remote sensing aims to provide flexible information for data analysis and application. In recent years, state-of-the-art methods are dedicated to ``scale decoupling'' and ``semantic decoupling'' strategies to further enhance the capability of representation. However, these previous approaches focus on either the disentangling scale or semantics but ignore merging these two ideas in a union model, which extremely limits the performance of cross-modal retrieval models. To address these issues, we propose a novel Scale-Semantic Joint Decoupling Network (SSJDN) for remote sensing image-text retrieval. Specifically, we design the Bidirectional Scale Decoupling (BSD) module, which exploits Salience Feature Extraction (SFE) and Salience-Guided Suppression (SGS) units to adaptively extract potential features and suppress cumbersome features at other scales in a bidirectional pattern to yield different scale clues. Besides, we design the Label-supervised Semantic Decoupling (LSD) module by leveraging the category semantic labels as prior knowledge to supervise images and texts probing significant semantic-related information. Finally, we design a Semantic-guided Triple Loss (STL), which adaptively generates a constant to adjust the loss function to improve the probability of matching the same semantic image and text and shorten the convergence time of the retrieval model. Our proposed SSJDN outperforms state-of-the-art approaches in numerical experiments conducted on four benchmark remote sensing datasets.