Wei, Xiaopeng
MeSIN: Multilevel Selective and Interactive Network for Medication Recommendation
An, Yang, Zhang, Liang, You, Mao, Tian, Xueqing, Jin, Bo, Wei, Xiaopeng
Recommending medications for patients using electronic health records (EHRs) is a crucial data mining task for an intelligent healthcare system. It can assist doctors in making clinical decisions more efficiently. However, the inherent complexity of the EHR data renders it as a challenging task: (1) Multilevel structures: the EHR data typically contains multilevel structures which are closely related with the decision-making pathways, e.g., laboratory results lead to disease diagnoses, and then contribute to the prescribed medications; (2) Multiple sequences interactions: multiple sequences in EHR data are usually closely correlated with each other; (3) Abundant noise: lots of task-unrelated features or noise information within EHR data generally result in suboptimal performance. To tackle the above challenges, we propose a multilevel selective and interactive network (MeSIN) for medication recommendation. Specifically, MeSIN is designed with three components. First, an attentional selective module (ASM) is applied to assign flexible attention scores to different medical codes embeddings by their relevance to the recommended medications in every admission. Second, we incorporate a novel interactive long-short term memory network (InLSTM) to reinforce the interactions of multilevel medical sequences in EHR data with the help of the calibrated memory-augmented cell and an enhanced input gate. Finally, we employ a global selective fusion module (GSFM) to infuse the multi-sourced information embeddings into final patient representations for medications recommendation. To validate our method, extensive experiments have been conducted on a real-world clinical dataset. The results demonstrate a consistent superiority of our framework over several baselines and testify the effectiveness of our proposed approach.
Multitask Dyadic Prediction and Its Application in Prediction of Adverse Drug-Drug Interaction
Jin, Bo (Dalian University of Technology) | Yang, Haoyu (Dalian University of Technology) | Xiao, Cao (IBM T.J.Watson Research Center) | Zhang, Ping (IBM T.J.Watson Research Center) | Wei, Xiaopeng (Dalian University of Technology) | Wang, Fei (Cornell University)
Adverse drug-drug interactions (DDIs) remain a leading cause of morbidity and mortality around the world. Identifying potential DDIs during the drug design process is critical in guiding targeted clinical drug safety testing. Although detection of adverse DDIs is conducted during Phase IV clinical trials, there are still a large number of new DDIs founded by accidents after the drugs were put on market. With the arrival of big data era, more and more pharmaceutical research and development data are becoming available, which provides an invaluable resource for digging insights that can potentially be leveraged in early prediction of DDIs. Many computational approaches have been proposed in recent years for DDI prediction. However, most of them focused on binary prediction (with or without DDI), despite the fact that each DDI is associated with a different type. Predicting the actual DDI type will help us better understand the DDI mechanism and identify proper ways to prevent it. In this paper, we formulate the DDI type prediction problem as a multitask dyadic regression problem, where the prediction of each specific DDI type is treated as a task. Compared with conventional matrix completion approaches which can only impute the missing entries in the DDI matrix, our approach can directly regress those dyadic relationships (DDIs) and thus can be extend to new drugs more easily. We developed an effective proximal gradient method to solve the problem. Evaluation on real world datasets is presented to demonstrate the effectiveness of the proposed approach.