Wei, Wei
Dataset Condensation with Latent Quantile Matching
Wei, Wei, De Schepper, Tom, Mets, Kevin
Dataset condensation (DC) methods aim to learn a smaller synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real dataset. However two distributions with the same mean can still be vastly different. In this work we demonstrate the shortcomings of using Maximum Mean Discrepancy to match latent distributions i.e. the weak matching power and lack of outlier regularization. To alleviate these shortcomings we propose our new method: Latent Quantile Matching (LQM) which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions. Empirical experiments on both image and graph-structured datasets show that LQM matches or outperforms previous state of the art in distribution matching based DC. Moreover we show that LQM improves the performance in continual graph learning (CGL) setting where memory efficiency and privacy can be important. Our work sheds light on the application of DM based DC for CGL.
Mitigating Boundary Ambiguity and Inherent Bias for Text Classification in the Era of Large Language Models
Lu, Zhenyi, Tian, Jie, Wei, Wei, Qu, Xiaoye, Cheng, Yu, xie, Wenfeng, Chen, Dangyang
Text classification is a crucial task encountered frequently in practical scenarios, yet it is still under-explored in the era of large language models (LLMs). This study shows that LLMs are vulnerable to changes in the number and arrangement of options in text classification. Our extensive empirical analyses reveal that the key bottleneck arises from ambiguous decision boundaries and inherent biases towards specific tokens and positions. To mitigate these issues, we make the first attempt and propose a novel two-stage classification framework for LLMs. Our approach is grounded in the empirical observation that pairwise comparisons can effectively alleviate boundary ambiguity and inherent bias. Specifically, we begin with a self-reduction technique to efficiently narrow down numerous options, which contributes to reduced decision space and a faster comparison process. Subsequently, pairwise contrastive comparisons are employed in a chain-of-thought manner to draw out nuances and distinguish confusable options, thus refining the ambiguous decision boundary. Extensive experiments on four datasets (Banking77, HWU64, LIU54, and Clinic150) verify the effectiveness of our framework. Furthermore, benefitting from our framework, various LLMs can achieve consistent improvements. Our code and data are available in \url{https://github.com/Chuge0335/PC-CoT}.
Position Debiasing Fine-Tuning for Causal Perception in Long-Term Dialogue
Fan, Shixuan, Wei, Wei, Li, Wendi, Mao, Xian-Ling, Xie, Wenfeng, Chen, Dangyang
The core of the dialogue system is to generate relevant, informative, and human-like responses based on extensive dialogue history. Recently, dialogue generation domain has seen mainstream adoption of large language models (LLMs), due to its powerful capability in generating utterances. However, there is a natural deficiency for such models, that is, inherent position bias, which may lead them to pay more attention to the nearby utterances instead of causally relevant ones, resulting in generating irrelevant and generic responses in long-term dialogue. To alleviate such problem, in this paper, we propose a novel method, named Causal Perception long-term Dialogue framework (CPD), which employs perturbation-based causal variable discovery method to extract casually relevant utterances from the dialogue history and enhances model causal perception during fine-tuning. Specifically, a local-position awareness method is proposed in CPD for inter-sentence position correlation elimination, which helps models extract causally relevant utterances based on perturbations. Then, a casual-perception fine-tuning strategy is also proposed, to enhance the capability of discovering the causal invariant factors, by differently perturbing causally relevant and non-casually relevant ones for response generation. Experimental results on two datasets prove that our proposed method can effectively alleviate the position bias for multiple LLMs and achieve significant progress compared with existing baselines.
Personalized Topic Selection Model for Topic-Grounded Dialogue
Fan, Shixuan, Wei, Wei, Wen, Xiaofei, Mao, Xianling, Chen, Jixiong, Chen, Dangyang
Recently, the topic-grounded dialogue (TGD) system has become increasingly popular as its powerful capability to actively guide users to accomplish specific tasks through topic-guided conversations. Most existing works utilize side information (\eg topics or personas) in isolation to enhance the topic selection ability. However, due to disregarding the noise within these auxiliary information sources and their mutual influence, current models tend to predict user-uninteresting and contextually irrelevant topics. To build user-engaging and coherent dialogue agent, we propose a \textbf{P}ersonalized topic s\textbf{E}lection model for \textbf{T}opic-grounded \textbf{D}ialogue, named \textbf{PETD}, which takes account of the interaction of side information to selectively aggregate such information for more accurately predicting subsequent topics. Specifically, we evaluate the correlation between global topics and personas and selectively incorporate the global topics aligned with user personas. Furthermore, we propose a contrastive learning based persona selector to filter out irrelevant personas under the constraint of lacking pertinent persona annotations. Throughout the selection and generation, diverse relevant side information is considered. Extensive experiments demonstrate that our proposed method can generate engaging and diverse responses, outperforming state-of-the-art baselines across various evaluation metrics.
Improving Pseudo Labels with Global-Local Denoising Framework for Cross-lingual Named Entity Recognition
Ding, Zhuojun, Wei, Wei, Qu, Xiaoye, Chen, Dangyang
Cross-lingual named entity recognition (NER) aims to train an NER model for the target language leveraging only labeled source language data and unlabeled target language data. Prior approaches either perform label projection on translated source language data or employ a source model to assign pseudo labels for target language data and train a target model on these pseudo-labeled data to generalize to the target language. However, these automatic labeling procedures inevitably introduce noisy labels, thus leading to a performance drop. In this paper, we propose a Global-Local Denoising framework (GLoDe) for cross-lingual NER. Specifically, GLoDe introduces a progressive denoising strategy to rectify incorrect pseudo labels by leveraging both global and local distribution information in the semantic space. The refined pseudo-labeled target language data significantly improves the model's generalization ability. Moreover, previous methods only consider improving the model with language-agnostic features, however, we argue that target language-specific features are also important and should never be ignored. To this end, we employ a simple auxiliary task to achieve this goal. Experimental results on two benchmark datasets with six target languages demonstrate that our proposed GLoDe significantly outperforms current state-of-the-art methods.
Harnessing Business and Media Insights with Large Language Models
Bao, Yujia, Shah, Ankit Parag, Narang, Neeru, Rivers, Jonathan, Maksey, Rajeev, Guan, Lan, Barrere, Louise N., Evenson, Shelley, Basole, Rahul, Miao, Connie, Mehta, Ankit, Boulay, Fabien, Park, Su Min, Pearson, Natalie E., Joy, Eldhose, He, Tiger, Thakur, Sumiran, Ghosal, Koustav, On, Josh, Morrison, Phoebe, Major, Tim, Wang, Eva Siqi, Escobar, Gina, Wei, Jiaheng, Weerasooriya, Tharindu Cyril, Song, Queena, Lashkevich, Daria, Chen, Clare, Kim, Gyuhak, Yin, Dengpan, Hejna, Don, Nomeli, Mo, Wei, Wei
This paper introduces Fortune Analytics Language Model (FALM). FALM empowers users with direct access to comprehensive business analysis, including market trends, company performance metrics, and expert insights. Unlike generic LLMs, FALM leverages a curated knowledge base built from professional journalism, enabling it to deliver precise and in-depth answers to intricate business questions. Users can further leverage natural language queries to directly visualize financial data, generating insightful charts and graphs to understand trends across diverse business sectors clearly. FALM fosters user trust and ensures output accuracy through three novel methods: 1) Time-aware reasoning guarantees accurate event registration and prioritizes recent updates. 2) Thematic trend analysis explicitly examines topic evolution over time, providing insights into emerging business landscapes. 3) Content referencing and task decomposition enhance answer fidelity and data visualization accuracy. We conduct both automated and human evaluations, demonstrating FALM's significant performance improvements over baseline methods while prioritizing responsible AI practices. These benchmarks establish FALM as a cutting-edge LLM in the business and media domains, with exceptional accuracy and trustworthiness.
Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning
Wang, Jiapu, Sun, Kai, Luo, Linhao, Wei, Wei, Hu, Yongli, Liew, Alan Wee-Chung, Pan, Shirui, Yin, Baocai
Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learning-based TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers. Nonetheless, LLMs are known to function as black boxes, making it challenging to comprehend their reasoning process. Additionally, due to the resource-intensive nature of fine-tuning, promptly updating LLMs to integrate evolving knowledge within TKGs for reasoning is impractical. To address these challenges, in this paper, we propose a Large Language Models-guided Dynamic Adaptation (LLM-DA) method for reasoning on TKGs. Specifically, LLM-DA harnesses the capabilities of LLMs to analyze historical data and extract temporal logical rules. These rules unveil temporal patterns and facilitate interpretable reasoning. To account for the evolving nature of TKGs, a dynamic adaptation strategy is proposed to update the LLM-generated rules with the latest events. This ensures that the extracted rules always incorporate the most recent knowledge and better generalize to the predictions on future events. Experimental results show that without the need of fine-tuning, LLM-DA significantly improves the accuracy of reasoning over several common datasets, providing a robust framework for TKGR tasks.
AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks
Lin, Zheng, Qu, Guanqiao, Wei, Wei, Chen, Xianhao, Leung, Kin K.
The increasing complexity of deep neural networks poses significant barriers to democratizing them to resource-limited edge devices. To address this challenge, split federated learning (SFL) has emerged as a promising solution by of floading the primary training workload to a server via model partitioning while enabling parallel training among edge devices. However, although system optimization substantially influences the performance of SFL under resource-constrained systems, the problem remains largely uncharted. In this paper, we provide a convergence analysis of SFL which quantifies the impact of model splitting (MS) and client-side model aggregation (MA) on the learning performance, serving as a theoretical foundation. Then, we propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems. Specifically, AdaptSFL adaptively controls client-side MA and MS to balance communication-computing latency and training convergence. Extensive simulations across various datasets validate that our proposed AdaptSFL framework takes considerably less time to achieve a target accuracy than benchmarks, demonstrating the effectiveness of the proposed strategies.
GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing
Yu, Chengqing, Wang, Fei, Shao, Zezhi, Qian, Tangwen, Zhang, Zhao, Wei, Wei, Xu, Yongjun
Multivariate time series forecasting (MTSF) is crucial for decision-making to precisely forecast the future values/trends, based on the complex relationships identified from historical observations of multiple sequences. Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have gradually become the theme of MTSF model as their powerful capability in mining spatial-temporal dependencies, but almost of them heavily rely on the assumption of historical data integrity. In reality, due to factors such as data collector failures and time-consuming repairment, it is extremely challenging to collect the whole historical observations without missing any variable. In this case, STGNNs can only utilize a subset of normal variables and easily suffer from the incorrect spatial-temporal dependency modeling issue, resulting in the degradation of their forecasting performance. To address the problem, in this paper, we propose a novel Graph Interpolation Attention Recursive Network (named GinAR) to precisely model the spatial-temporal dependencies over the limited collected data for forecasting. In GinAR, it consists of two key components, that is, interpolation attention and adaptive graph convolution to take place of the fully connected layer of simple recursive units, and thus are capable of recovering all missing variables and reconstructing the correct spatial-temporal dependencies for recursively modeling of multivariate time series data, respectively. Extensive experiments conducted on five real-world datasets demonstrate that GinAR outperforms 11 SOTA baselines, and even when 90% of variables are missing, it can still accurately predict the future values of all variables.
HiGPT: Heterogeneous Graph Language Model
Tang, Jiabin, Yang, Yuhao, Wei, Wei, Shi, Lei, Xia, Long, Yin, Dawei, Huang, Chao
Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?'' To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations, our proposed framework demonstrates exceptional performance in terms of generalization performance.