Goto

Collaborating Authors

 Wei, Tianhao


Verification of Neural Control Barrier Functions with Symbolic Derivative Bounds Propagation

arXiv.org Artificial Intelligence

Safe control is of great importance in online decision making for robot learning through filtering out unsafe explorative actions [1, 2, 3, 4], guaranteeing safety during sim-to-real transfer in a hierarchical manner [5]. As an effective tool of safe control, control barrier functions (CBFs) have been studied for years on both verification and synthesis [6, 7, 8, 9, 10]. A valid CBF guarantees safety by ensuring the function values non-positive for any states along the safe trajectory, implicitly enforcing the non-trivial forward invariance that feasible control inputs always exist to maintain the following non-positive energy values once the state is safe. To ensure forward invariance, polynomial-based CBFs have been proposed based on hand-crafted parametric functions [11, 12, 13], which can be verified through algebraic geometry techniques like sum-of-squares (SOS) optimization [14, 15, 16]. However, polynomial-based CBFs cannot encode complicated safety constraints [17], and the generic parameterization of non-conservative safe control for various nonlinear dynamics and nonconvex safety specifications is needed. Neural network parameterized CBFs (neural CBFs) have shown promising results due to their powerful expressiveness in modeling complex dynamics with bounded control inputs [18, 19, 20, 21, 22]. But it is challenging to guarantee that the learned neural CBF is valid because of its poor mathematical interpretability. One way to ensure the safety/stability of the dynamic system is to learn neural barrier/Lyapunov certificates [23, 24, 25, 26, 27, 28], but it may be too conservative and cause false negatives if the formal verification only relies on a specific control policy [17, 29]. Recent works to directly verify the forward invariance of learned neural CBFs are based on SMT-based counterexample falsification [30, 31], mixed integer programming [32], Lipschitz neural networks [33], and CROWN-based linear bound propagation [34, 35, 36].


Absolute State-wise Constrained Policy Optimization: High-Probability State-wise Constraints Satisfaction

arXiv.org Artificial Intelligence

Enforcing state-wise safety constraints is critical for the application of reinforcement learning (RL) in real-world problems, such as autonomous driving and robot manipulation. However, existing safe RL methods only enforce state-wise constraints in expectation or enforce hard state-wise constraints with strong assumptions. The former does not exclude the probability of safety violations, while the latter is impractical. Our insight is that although it is intractable to guarantee hard state-wise constraints in a model-free setting, we can enforce state-wise safety with high probability while excluding strong assumptions. To accomplish the goal, we propose Absolute State-wise Constrained Policy Optimization (ASCPO), a novel general-purpose policy search algorithm that guarantees high-probability state-wise constraint satisfaction for stochastic systems. We demonstrate the effectiveness of our approach by training neural network policies for extensive robot locomotion tasks, where the agent must adhere to various state-wise safety constraints. Our results show that ASCPO significantly outperforms existing methods in handling state-wise constraints across challenging continuous control tasks, highlighting its potential for real-world applications.


ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks

arXiv.org Artificial Intelligence

Deep Neural Networks (DNN) are crucial in approximating nonlinear functions across diverse applications, ranging from image classification to control. Verifying specific input-output properties can be a highly challenging task due to the lack of a single, self-contained framework that allows a complete range of verification types. To this end, we present \texttt{ModelVerification.jl (MV)}, the first comprehensive, cutting-edge toolbox that contains a suite of state-of-the-art methods for verifying different types of DNNs and safety specifications. This versatile toolbox is designed to empower developers and machine learning practitioners with robust tools for verifying and ensuring the trustworthiness of their DNN models.


Meta-Control: Automatic Model-based Control Synthesis for Heterogeneous Robot Skills

arXiv.org Artificial Intelligence

The requirements for real-world manipulation tasks are diverse and often conflicting; some tasks require precise motion while others require force compliance; some tasks require avoidance of certain regions, while others require convergence to certain states. Satisfying these varied requirements with a fixed state-action representation and control strategy is challenging, impeding the development of a universal robotic foundation model. In this work, we propose Meta-Control, the first LLM-enabled automatic control synthesis approach that creates customized state representations and control strategies tailored to specific tasks. Our core insight is that a meta-control system can be built to automate the thought process that human experts use to design control systems. Specifically, human experts heavily use a model-based, hierarchical (from abstract to concrete) thought model, then compose various dynamic models and controllers together to form a control system. Meta-Control mimics the thought model and harnesses LLM's extensive control knowledge with Socrates' "art of midwifery" to automate the thought process. Meta-Control stands out for its fully model-based nature, allowing rigorous analysis, generalizability, robustness, efficient parameter tuning, and reliable real-time execution.


Absolute Policy Optimization

arXiv.org Artificial Intelligence

In recent years, trust region on-policy reinforcement learning has achieved impressive results in addressing complex control tasks and gaming scenarios. However, contemporary state-of-the-art algorithms within this category primarily emphasize improvement in expected performance, lacking the ability to control over the worst-case performance outcomes. To address this limitation, we introduce a novel objective function; by optimizing which, it will lead to guaranteed monotonic improvement in the lower bound of near-total performance samples (absolute performance). Considering this groundbreaking theoretical advancement, we then refine this theoretically grounded algorithm through a series of approximations, resulting in a practical solution called Absolute Policy Optimization (APO). Our experiments demonstrate the effectiveness of our approach across challenging continuous control benchmark tasks and extend its applicability to mastering Atari games. Our findings reveal that APO significantly outperforms state-of-the-art policy gradient algorithms, resulting in substantial improvements in both expected performance and worst-case performance.


Multimodal Safe Control for Human-Robot Interaction

arXiv.org Artificial Intelligence

Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.


Safety Index Synthesis via Sum-of-Squares Programming

arXiv.org Artificial Intelligence

Control systems often need to satisfy strict safety requirements. Safety index provides a handy way to evaluate the safety level of the system and derive the resulting safe control policies. However, designing safety index functions under control limits is difficult and requires a great amount of expert knowledge. This paper proposes a framework for synthesizing the safety index for general control systems using sum-of-squares programming. Our approach is to show that ensuring the non-emptiness of safe control on the safe set boundary is equivalent to a local manifold positiveness problem. We then prove that this problem is equivalent to sum-of-squares programming via the Positivstellensatz of algebraic geometry. We validate the proposed method on robot arms with different degrees of freedom and ground vehicles. The results show that the synthesized safety index guarantees safety and our method is effective even in high-dimensional robot systems.


Robust Safe Control with Multi-Modal Uncertainty

arXiv.org Artificial Intelligence

Safety in dynamic systems with prevalent uncertainties is crucial. Current robust safe controllers, designed primarily for uni-modal uncertainties, may be either overly conservative or unsafe when handling multi-modal uncertainties. To address the problem, we introduce a novel framework for robust safe control, tailored to accommodate multi-modal Gaussian dynamics uncertainties and control limits. We first present an innovative method for deriving the least conservative robust safe control under additive multi-modal uncertainties. Next, we propose a strategy to identify a locally least-conservative robust safe control under multiplicative uncertainties. Following these, we introduce a unique safety index synthesis method. This provides the foundation for a robust safe controller that ensures a high probability of realizability under control limits and multi-modal uncertainties. Experiments on a simulated Segway validate our approach, showing consistent realizability and less conservatism than controllers designed using uni-modal uncertainty methods. The framework offers significant potential for enhancing safety and performance in robotic applications.


Learn With Imagination: Safe Set Guided State-wise Constrained Policy Optimization

arXiv.org Artificial Intelligence

Deep reinforcement learning (RL) excels in various control tasks, yet the absence of safety guarantees hampers its real-world applicability. In particular, explorations during learning usually results in safety violations, while the RL agent learns from those mistakes. On the other hand, safe control techniques ensure persistent safety satisfaction but demand strong priors on system dynamics, which is usually hard to obtain in practice. To address these problems, we present Safe Set Guided State-wise Constrained Policy Optimization (S-3PO), a pioneering algorithm generating state-wise safe optimal policies with zero training violations, i.e., learning without mistakes. S-3PO first employs a safety-oriented monitor with black-box dynamics to ensure safe exploration. It then enforces a unique cost for the RL agent to converge to optimal behaviors within safety constraints. S-3PO outperforms existing methods in high-dimensional robotics tasks, managing state-wise constraints with zero training violation. This innovation marks a significant stride towards real-world safe RL deployment.


State-wise Constrained Policy Optimization

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) algorithms have shown tremendous success in simulation environments, but their application to real-world problems faces significant challenges, with safety being a major concern. In particular, enforcing state-wise constraints is essential for many challenging tasks such as autonomous driving and robot manipulation. However, existing safe RL algorithms under the framework of Constrained Markov Decision Process (CMDP) do not consider state-wise constraints. To address this gap, we propose State-wise Constrained Policy Optimization (SCPO), the first general-purpose policy search algorithm for state-wise constrained reinforcement learning. SCPO provides guarantees for state-wise constraint satisfaction in expectation. In particular, we introduce the framework of Maximum Markov Decision Process, and prove that the worst-case safety violation is bounded under SCPO. We demonstrate the effectiveness of our approach on training neural network policies for extensive robot locomotion tasks, where the agent must satisfy a variety of state-wise safety constraints. Our results show that SCPO significantly outperforms existing methods and can handle state-wise constraints in high-dimensional robotics tasks.