Wei, Pengfei
Sampling and active learning methods for network reliability estimation using K-terminal spanning tree
Ding, Chen, Wei, Pengfei, Shi, Yan, Liu, Jinxing, Broggi, Matteo, Beer, Michael
Network reliability analysis remains a challenge due to the increasing size and complexity of networks. This paper presents a novel sampling method and an active learning method for efficient and accurate network reliability estimation under node failure and edge failure scenarios. The proposed sampling method adopts Monte Carlo technique to sample component lifetimes and the K-terminal spanning tree algorithm to accelerate structure function computation. Unlike existing methods that compute only one structure function value per sample, our method generates multiple component state vectors and corresponding structure function values from each sample. Network reliability is estimated based on survival signatures derived from these values. A transformation technique extends this method to handle both node failure and edge failure. To enhance efficiency of proposed sampling method and achieve adaptability to network topology changes, we introduce an active learning method utilizing a random forest (RF) classifier. This classifier directly predicts structure function values, integrates network behaviors across diverse topologies, and undergoes iterative refinement to enhance predictive accuracy. Importantly, the trained RF classifier can directly predict reliability for variant networks, a capability beyond the sampling method alone. Through investigating several network examples and two practical applications, the effectiveness of both proposed methods is demonstrated.
Unsupervised Video Domain Adaptation for Action Recognition: A Disentanglement Perspective
Wei, Pengfei, Kong, Lingdong, Qu, Xinghua, Ren, Yi, Xu, Zhiqiang, Jiang, Jing, Yin, Xiang
Unsupervised video domain adaptation is a practical yet challenging task. In this work, for the first time, we tackle it from a disentanglement view. Our key idea is to handle the spatial and temporal domain divergence separately through disentanglement. Specifically, we consider the generation of cross-domain videos from two sets of latent factors, one encoding the static information and another encoding the dynamic information. A Transfer Sequential VAE (TranSVAE) framework is then developed to model such generation. To better serve for adaptation, we propose several objectives to constrain the latent factors. With these constraints, the spatial divergence can be readily removed by disentangling the static domain-specific information out, and the temporal divergence is further reduced from both frame- and video-levels through adversarial learning. Extensive experiments on the UCF-HMDB, Jester, and Epic-Kitchens datasets verify the effectiveness and superiority of TranSVAE compared with several state-of-the-art approaches. Code is publicly available.
Adaptive Policy Learning for Offline-to-Online Reinforcement Learning
Zheng, Han, Luo, Xufang, Wei, Pengfei, Song, Xuan, Li, Dongsheng, Jiang, Jing
Conventional reinforcement learning (RL) needs an environment to collect fresh data, which is impractical when online interactions are costly. Offline RL provides an alternative solution by directly learning from the previously collected dataset. However, it will yield unsatisfactory performance if the quality of the offline datasets is poor. In this paper, we consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online, and propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data. Specifically, we explicitly consider the difference between the online and offline data and apply an adaptive update scheme accordingly, that is, a pessimistic update strategy for the offline dataset and an optimistic/greedy update scheme for the online dataset. Such a simple and effective method provides a way to mix the offline and online RL and achieve the best of both worlds. We further provide two detailed algorithms for implementing the framework through embedding value or policy-based RL algorithms into it. Finally, we conduct extensive experiments on popular continuous control tasks, and results show that our algorithm can learn the expert policy with high sample efficiency even when the quality of offline dataset is poor, e.g., random dataset.
Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning
Liu, Zhining, Wei, Pengfei, Wei, Zhepei, Yu, Boyang, Jiang, Jing, Cao, Wei, Bian, Jiang, Chang, Yi
Imbalanced Learning (IL) is an important problem that widely exists in data mining applications. Typical IL methods utilize intuitive class-wise resampling or reweighting to directly balance the training set. However, some recent research efforts in specific domains show that class-imbalanced learning can be achieved without class-wise manipulation. This prompts us to think about the relationship between the two different IL strategies and the nature of the class imbalance. Fundamentally, they correspond to two essential imbalances that exist in IL: the difference in quantity between examples from different classes as well as between easy and hard examples within a single class, i.e., inter-class and intra-class imbalance. Existing works fail to explicitly take both imbalances into account and thus suffer from suboptimal performance. In light of this, we present Duple-Balanced Ensemble, namely DUBE , a versatile ensemble learning framework. Unlike prevailing methods, DUBE directly performs inter-class and intra-class balancing without relying on heavy distance-based computation, which allows it to achieve competitive performance while being computationally efficient. We also present a detailed discussion and analysis about the pros and cons of different inter/intra-class balancing strategies based on DUBE . Extensive experiments validate the effectiveness of the proposed method. Code and examples are available at https://github.com/ICDE2022Sub/duplebalance.
IMBENS: Ensemble Class-imbalanced Learning in Python
Liu, Zhining, Wei, Zhepei, Yu, Erxin, Huang, Qiang, Guo, Kai, Yu, Boyang, Cai, Zhaonian, Ye, Hangting, Cao, Wei, Bian, Jiang, Wei, Pengfei, Jiang, Jing, Chang, Yi
It provides access to multiple state-of-art ensemble imbalanced learning (EIL) methods, visualizer, and utility functions for dealing with the class imbalance problem. These ensemble methods include resampling-based, e.g., under/over-sampling, and reweighting-based ones, e.g., cost-sensitive learning. Beyond the implementation, we also extend conventional binary EIL algorithms with new functionalities like multi-class support and resampling scheduler, thereby enabling them to handle more complex tasks. The package was developed under a simple, well-documented API design follows that of scikit-learn for increased ease of use.
Adaptive Multi-Source Causal Inference
Vo, Thanh Vinh, Wei, Pengfei, Hoang, Trong Nghia, Leong, Tze-Yun
Data scarcity is a tremendous challenge in causal effect estimation. In this paper, we propose to exploit additional data sources to facilitate estimating causal effects in the target population. Specifically, we leverage additional source datasets which share similar causal mechanisms with the target observations to help infer causal effects of the target population. We propose three levels of knowledge transfer, through modelling the outcomes, treatments, and confounders. To achieve consistent positive transfer, we introduce learnable parametric transfer factors to adaptively control the transfer strength, and thus achieving a fair and balanced knowledge transfer between the sources and the target. The proposed method can infer causal effects in the target population without prior knowledge of data discrepancy between the additional data sources and the target. Experiments on both synthetic and real-world datasets show the effectiveness of the proposed method as compared with recent baselines.
Joint Intent Detection and Slot Filling with Wheel-Graph Attention Networks
Wei, Pengfei, Zeng, Bi, Liao, Wenxiong
Multiple deep learning-based joint models have demonstrated excellent results on Table 1: An example with intent and slot annotation the two tasks. In this paper, we propose a new joint (BIO format), which indicates the slot of movie name model with a wheel-graph attention network (Wheel-from an utterance with an intent PlayMusic. GAT) which is able to model interrelated connections directly for intent detection and slot filling. To construct a graph structure for utterances, we create intent The SLU module takesuser utterance as input and performs nodes, slot nodes, and directed edges. Intent nodes three tasks: domain determination, intent detection, can provide utterance-level semantic information for and slot filling [11]. Among them, the first two slot filling, while slot nodes can also provide local keyword tasks are often framed as a classification problem, which information for intent. Experiments show that infers the domain or intent (from a predefined set of our model outperforms multiple baselines on two public candidates) based on the current user utterance [27].
Randomized Transferable Machine
Wei, Pengfei, Leong, Tze Yun
Feature-based transfer is one of the most effective methodologies for transfer learning. Existing studies usually assume that the learned new feature representation is truly \emph{domain-invariant}, and thus directly train a transfer model $\mathcal{M}$ on source domain. In this paper, we consider a more realistic scenario where the new feature representation is suboptimal and small divergence still exists across domains. We propose a new learning strategy with a transfer model called Randomized Transferable Machine (RTM). More specifically, we work on source data with the new feature representation learned from existing feature-based transfer methods. The key idea is to enlarge source training data populations by randomly corrupting source data using some noises, and then train a transfer model $\widetilde{\mathcal{M}}$ that performs well on all the corrupted source data populations. In principle, the more corruptions are made, the higher the probability of the target data can be covered by the constructed source populations, and thus better transfer performance can be achieved by $\widetilde{\mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We develop a marginalized solution with linear regression model and dropout noise. With a marginalization trick, we can train an RTM that is equivalently to training using infinite source noisy populations without truly conducting any corruption. More importantly, such an RTM has a closed-form solution, which enables very fast and efficient training. Extensive experiments on various real-world transfer tasks show that RTM is a promising transfer model.
Cooperative Heterogeneous Deep Reinforcement Learning
Zheng, Han, Wei, Pengfei, Jiang, Jing, Long, Guodong, Lu, Qinghua, Zhang, Chengqi
Numerous deep reinforcement learning agents have been proposed, and each of them has its strengths and flaws. In this work, we present a Cooperative Heterogeneous Deep Reinforcement Learning (CHDRL) framework that can learn a policy by integrating the advantages of heterogeneous agents. Specifically, we propose a cooperative learning framework that classifies heterogeneous agents into two classes: global agents and local agents. Global agents are off-policy agents that can utilize experiences from the other agents. Local agents are either on-policy agents or population-based evolutionary algorithms (EAs) agents that can explore the local area effectively. We employ global agents, which are sample-efficient, to guide the learning of local agents so that local agents can benefit from sample-efficient agents and simultaneously maintain their advantages, e.g., stability. Global agents also benefit from effective local searches. Experimental studies on a range of continuous control tasks from the Mujoco benchmark show that CHDRL achieves better performance compared with state-of-the-art baselines.
MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler
Liu, Zhining, Wei, Pengfei, Jiang, Jing, Cao, Wei, Bian, Jiang, Chang, Yi
Imbalanced learning (IL), i.e., learning unbiased models from class-imbalanced data, is a challenging problem. Typical IL methods including resampling and reweighting were designed based on some heuristic assumptions. They often suffer from unstable performance, poor applicability, and high computational cost in complex tasks where their assumptions do not hold. In this paper, we introduce a novel ensemble IL framework named MESA. It adaptively resamples the training set in iterations to get multiple classifiers and forms a cascade ensemble model. MESA directly learns the sampling strategy from data to optimize the final metric beyond following random heuristics. Moreover, unlike prevailing meta-learning-based IL solutions, we decouple the model-training and meta-training in MESA by independently train the meta-sampler over task-agnostic meta-data. This makes MESA generally applicable to most of the existing learning models and the meta-sampler can be efficiently applied to new tasks. Extensive experiments on both synthetic and real-world tasks demonstrate the effectiveness, robustness, and transferability of MESA. Our code is available at https://github.com/ZhiningLiu1998/mesa.