Wei, Minghan
Predicting Energy Consumption of Ground Robots On Uneven Terrains
Wei, Minghan, Isler, Volkan
Optimizing energy consumption for robot navigation in fields requires energy-cost maps. However, obtaining such a map is still challenging, especially for large, uneven terrains. Physics-based energy models work for uniform, flat surfaces but do not generalize well to these terrains. Furthermore, slopes make the energy consumption at every location directional and add to the complexity of data collection and energy prediction. In this paper, we address these challenges in a data-driven manner. We consider a function which takes terrain geometry and robot motion direction as input and outputs expected energy consumption. The function is represented as a ResNet-based neural network whose parameters are learned from field-collected data. The prediction accuracy of our method is within 12% of the ground truth in our test environments that are unseen during training. We compare our method to a baseline method in the literature: a method using a basic physics-based model. We demonstrate that our method significantly outperforms it by more than 10% measured by the prediction error. More importantly, our method generalizes better when applied to test data from new environments with various slope angles and navigation directions.
A Log-Approximation for Coverage Path Planning with the Energy Constraint
Wei, Minghan (University of Minnesota) | Isler, Volkan (University of Minnesota)
We consider the problem of covering an environment with a robot when the robot has limited energy budget. The environment is represented as a polygon with a grid, whose resolution is proportional to the robot size, imposed on it. There is a single charging station in the environment. At each time step, the robot can move from one grid cell to an adjacent one.The energy consumption when moving in the environment is assumed to be uniform and proportional to the distance traveled. Our goal is to minimize both the total distance and the number of visits to the charging station. We present a coverage path planning algorithm which has O(ln D) approxima-tion factor for both objectives, where D is the distance of thefurthest cell in the environment measured on the grid.