Wei, Min
Computation Rate Maximization for Wireless Powered Edge Computing With Multi-User Cooperation
Li, Yang, Zhang, Xing, Lei, Bo, Zhao, Qianying, Wei, Min, Qu, Zheyan, Wang, Wenbo
The combination of mobile edge computing (MEC) and radio frequency-based wireless power transfer (WPT) presents a promising technique for providing sustainable energy supply and computing services at the network edge. This study considers a wireless-powered mobile edge computing system that includes a hybrid access point (HAP) equipped with a computing unit and multiple Internet of Things (IoT) devices. In particular, we propose a novel muti-user cooperation scheme to improve computation performance, where collaborative clusters are dynamically formed. Each collaborative cluster comprises a source device (SD) and an auxiliary device (AD), where the SD can partition the computation task into various segments for local processing, offloading to the HAP, and remote execution by the AD with the assistance of the HAP. Specifically, we aims to maximize the weighted sum computation rate (WSCR) of all the IoT devices in the network. This involves jointly optimizing collaboration, time and data allocation among multiple IoT devices and the HAP, while considering the energy causality property and the minimum data processing requirement of each device. Initially, an optimization algorithm based on the interior-point method is designed for time and data allocation. Subsequently, a priority-based iterative algorithm is developed to search for a near-optimal solution to the multi-user collaboration scheme. Finally, a deep learning-based approach is devised to further accelerate the algorithm's operation, building upon the initial two algorithms. Simulation results show that the performance of the proposed algorithms is comparable to that of the exhaustive search method, and the deep learning-based algorithm significantly reduces the execution time of the algorithm.
Communication Efficiency Optimization of Federated Learning for Computing and Network Convergence of 6G Networks
Cai, Yizhuo, Lei, Bo, Zhao, Qianying, Peng, Jing, Wei, Min, Zhang, Yushun, Zhang, Xing
Federated learning effectively addresses issues such as data privacy by collaborating across participating devices to train global models. However, factors such as network topology and device computing power can affect its training or communication process in complex network environments. A new network architecture and paradigm with computing-measurable, perceptible, distributable, dispatchable, and manageable capabilities, computing and network convergence (CNC) of 6G networks can effectively support federated learning training and improve its communication efficiency. By guiding the participating devices' training in federated learning based on business requirements, resource load, network conditions, and arithmetic power of devices, CNC can reach this goal. In this paper, to improve the communication efficiency of federated learning in complex networks, we study the communication efficiency optimization of federated learning for computing and network convergence of 6G networks, methods that gives decisions on its training process for different network conditions and arithmetic power of participating devices in federated learning. The experiments address two architectures that exist for devices in federated learning and arrange devices to participate in training based on arithmetic power while achieving optimization of communication efficiency in the process of transferring model parameters. The results show that the method we proposed can (1) cope well with complex network situations (2) effectively balance the delay distribution of participating devices for local training (3) improve the communication efficiency during the transfer of model parameters (4) improve the resource utilization in the network.
Mutual Information-Based Unsupervised Feature Transformation for Heterogeneous Feature Subset Selection
Wei, Min, Chow, Tommy W. S., Chan, Rosa H. M.
Conventional mutual information (MI) based feature selection (FS) methods are unable to handle heterogeneous feature subset selection properly because of data format differences or estimation methods of MI between feature subset and class label. A way to solve this problem is feature transformation (FT). In this study, a novel unsupervised feature transformation (UFT) which can transform non-numerical features into numerical features is developed and tested. The UFT process is MI-based and independent of class label. MI-based FS algorithms, such as Parzen window feature selector (PWFS), minimum redundancy maximum relevance feature selection (mRMR), and normalized MI feature selection (NMIFS), can all adopt UFT for pre-processing of non-numerical features. Unlike traditional FT methods, the proposed UFT is unbiased while PWFS is utilized to its full advantage. Simulations and analyses of large-scale datasets showed that feature subset selected by the integrated method, UFT-PWFS, outperformed other FT-FS integrated methods in classification accuracy.