Wei, Meng
Learning from Concealed Labels
Li, Zhongnian, Wei, Meng, Ying, Peng, Sun, Tongfeng, Xu, Xinzheng
Annotating data for sensitive labels (e.g., disease, smoking) poses a potential threats to individual privacy in many real-world scenarios. To cope with this problem, we propose a novel setting to protect privacy of each instance, namely learning from concealed labels for multi-class classification. Concealed labels prevent sensitive labels from appearing in the label set during the label collection stage, which specifies none and some random sampled insensitive labels as concealed labels set to annotate sensitive data. In this paper, an unbiased estimator can be established from concealed data under mild assumptions, and the learned multi-class classifier can not only classify the instance from insensitive labels accurately but also recognize the instance from the sensitive labels. Moreover, we bound the estimation error and show that the multi-class classifier achieves the optimal parametric convergence rate. Experiments demonstrate the significance and effectiveness of the proposed method for concealed labels in synthetic and real-world datasets.
ESA: Example Sieve Approach for Multi-Positive and Unlabeled Learning
Li, Zhongnian, Wei, Meng, Ying, Peng, Xu, Xinzheng
Learning from Multi-Positive and Unlabeled (MPU) data has gradually attracted significant attention from practical applications. Unfortunately, the risk of MPU also suffer from the shift of minimum risk, particularly when the models are very flexible as shown in Fig.\ref{moti}. In this paper, to alleviate the shifting of minimum risk problem, we propose an Example Sieve Approach (ESA) to select examples for training a multi-class classifier. Specifically, we sieve out some examples by utilizing the Certain Loss (CL) value of each example in the training stage and analyze the consistency of the proposed risk estimator. Besides, we show that the estimation error of proposed ESA obtains the optimal parametric convergence rate. Extensive experiments on various real-world datasets show the proposed approach outperforms previous methods.
OVExp: Open Vocabulary Exploration for Object-Oriented Navigation
Wei, Meng, Wang, Tai, Chen, Yilun, Wang, Hanqing, Pang, Jiangmiao, Liu, Xihui
Object-oriented embodied navigation aims to locate specific objects, defined by category or depicted in images. Existing methods often struggle to generalize to open vocabulary goals without extensive training data. While recent advances in Vision-Language Models (VLMs) offer a promising solution by extending object recognition beyond predefined categories, efficient goal-oriented exploration becomes more challenging in an open vocabulary setting. We introduce OVExp, a learning-based framework that integrates VLMs for Open-Vocabulary Exploration. OVExp constructs scene representations by encoding observations with VLMs and projecting them onto top-down maps for goal-conditioned exploration. Goals are encoded in the same VLM feature space, and a lightweight transformer-based decoder predicts target locations while maintaining versatile representation abilities. To address the impracticality of fusing dense pixel embeddings with full 3D scene reconstruction for training, we propose constructing maps using low-cost semantic categories and transforming them into CLIP's embedding space via the text encoder. The simple but effective design of OVExp significantly reduces computational costs and demonstrates strong generalization abilities to various navigation settings. Experiments on established benchmarks show OVExp outperforms previous zero-shot methods, can generalize to diverse scenes, and handle different goal modalities.
Learning from True-False Labels via Multi-modal Prompt Retrieving
Li, Zhongnian, Xu, Jinghao, Ying, Peng, Wei, Meng, Sun, Tongfeng, Xu, Xinzheng
Weakly supervised learning has recently achieved considerable success in reducing annotation costs and label noise. Unfortunately, existing weakly supervised learning methods are short of ability in generating reliable labels via pre-trained vision-language models (VLMs). In this paper, we propose a novel weakly supervised labeling setting, namely True-False Labels (TFLs) which can achieve high accuracy when generated by VLMs. The TFL indicates whether an instance belongs to the label, which is randomly and uniformly sampled from the candidate label set. Specifically, we theoretically derive a risk-consistent estimator to explore and utilize the conditional probability distribution information of TFLs. Besides, we propose a convolutional-based Multi-modal Prompt Retrieving (MRP) method to bridge the gap between the knowledge of VLMs and target learning tasks. Experimental results demonstrate the effectiveness of the proposed TFL setting and MRP learning method. The code to reproduce the experiments is at https://github.com/Tranquilxu/TMP.
Learning from Reduced Labels for Long-Tailed Data
Wei, Meng, Li, Zhongnian, Zhou, Yong, Xu, Xinzheng
Long-tailed data is prevalent in real-world classification tasks and heavily relies on supervised information, which makes the annotation process exceptionally labor-intensive and time-consuming. Unfortunately, despite being a common approach to mitigate labeling costs, existing weakly supervised learning methods struggle to adequately preserve supervised information for tail samples, resulting in a decline in accuracy for the tail classes. To alleviate this problem, we introduce a novel weakly supervised labeling setting called Reduced Label. The proposed labeling setting not only avoids the decline of supervised information for the tail samples, but also decreases the labeling costs associated with long-tailed data. Additionally, we propose an straightforward and highly efficient unbiased framework with strong theoretical guarantees to learn from these Reduced Labels. Extensive experiments conducted on benchmark datasets including ImageNet validate the effectiveness of our approach, surpassing the performance of state-of-the-art weakly supervised methods.
Determined Multi-Label Learning via Similarity-Based Prompt
Wei, Meng, Li, Zhongnian, Ying, Peng, Zhou, Yong, Xu, Xinzheng
In multi-label classification, each training instance is associated with multiple class labels simultaneously. Unfortunately, collecting the fully precise class labels for each training instance is time- and labor-consuming for real-world applications. To alleviate this problem, a novel labeling setting termed \textit{Determined Multi-Label Learning} (DMLL) is proposed, aiming to effectively alleviate the labeling cost inherent in multi-label tasks. In this novel labeling setting, each training instance is associated with a \textit{determined label} (either "Yes" or "No"), which indicates whether the training instance contains the provided class label. The provided class label is randomly and uniformly selected from the whole candidate labels set. Besides, each training instance only need to be determined once, which significantly reduce the annotation cost of the labeling task for multi-label datasets. In this paper, we theoretically derive an risk-consistent estimator to learn a multi-label classifier from these determined-labeled training data. Additionally, we introduce a similarity-based prompt learning method for the first time, which minimizes the risk-consistent loss of large-scale pre-trained models to learn a supplemental prompt with richer semantic information. Extensive experimental validation underscores the efficacy of our approach, demonstrating superior performance compared to existing state-of-the-art methods.
SegMatch: A semi-supervised learning method for surgical instrument segmentation
Wei, Meng, Budd, Charlie, Garcia-Peraza-Herrera, Luis C., Dorent, Reuben, Shi, Miaojing, Vercauteren, Tom
Surgical instrument segmentation is recognised as a key enabler to provide advanced surgical assistance and improve computer assisted interventions. In this work, we propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images. SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling, and adapts it for the purpose of segmentation. In our proposed SegMatch, the unlabelled images are weakly augmented and fed into the segmentation model to generate a pseudo-label to enforce the unsupervised loss against the output of the model for the adversarial augmented image on the pixels with a high confidence score. Our adaptation for segmentation tasks includes carefully considering the equivariance and invariance properties of the augmentation functions we rely on. To increase the relevance of our augmentations, we depart from using only handcrafted augmentations and introduce a trainable adversarial augmentation strategy. Our algorithm was evaluated on the MICCAI Instrument Segmentation Challenge datasets Robust-MIS 2019 and EndoVis 2017. Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches which are limited by the availability of training data in these challenges. SegMatch also outperforms a range of state-of-the-art semi-supervised learning semantic segmentation models in different labelled to unlabelled data ratios.
Class-Imbalanced Complementary-Label Learning via Weighted Loss
Wei, Meng, Zhou, Yong, Li, Zhongnian, Xu, Xinzheng
Complementary-label learning (CLL) is widely used in weakly supervised classification, but it faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples. In such scenarios, the number of samples in one class is considerably lower than in other classes, which consequently leads to a decline in the accuracy of predictions. Unfortunately, existing CLL approaches have not investigate this problem. To alleviate this challenge, we propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification. To tackle this problem, we propose a novel CLL approach called Weighted Complementary-Label Learning (WCLL). The proposed method models a weighted empirical risk minimization loss by utilizing the class-imbalanced complementary labels, which is also applicable to multi-class imbalanced training samples. Furthermore, we derive an estimation error bound to provide theoretical assurance. To evaluate our approach, we conduct extensive experiments on several widely-used benchmark datasets and a real-world dataset, and compare our method with existing state-of-the-art methods. The proposed approach shows significant improvement in these datasets, even in the case of multiple class-imbalanced scenarios. Notably, the proposed method not only utilizes complementary labels to train a classifier but also solves the problem of class imbalance.
Learning from Stochastic Labels
Wei, Meng, Li, Zhongnian, Zhou, Yong, Guo, Qiaoyu, Xu, Xinzheng
Annotating multi-class instances is a crucial task in the field of machine learning. Unfortunately, identifying the correct class label from a long sequence of candidate labels is time-consuming and laborious. To alleviate this problem, we design a novel labeling mechanism called stochastic label. In this setting, stochastic label includes two cases: 1) identify a correct class label from a small number of randomly given labels; 2) annotate the instance with None label when given labels do not contain correct class label. In this paper, we propose a novel suitable approach to learn from these stochastic labels. We obtain an unbiased estimator that utilizes less supervised information in stochastic labels to train a multi-class classifier. Additionally, it is theoretically justifiable by deriving the estimation error bound of the proposed method. Finally, we conduct extensive experiments on widely-used benchmark datasets to validate the superiority of our method by comparing it with existing state-of-the-art methods.
XJTLUIndoorLoc: A New Fingerprinting Database for Indoor Localization and Trajectory Estimation Based on Wi-Fi RSS and Geomagnetic Field
Zhong, Zhenghang, Tang, Zhe, Li, Xiangxing, Yuan, Tiancheng, Yang, Yang, Wei, Meng, Zhang, Yuanyuan, Sheng, Renzhi, Grant, Naomi, Ling, Chongfeng, Huan, Xintao, Kim, Kyeong Soo, Lee, Sanghyuk
Abstract--In this paper, we present a new location fingerprinting database comprised of Wi-Fi received signal strength (RSS) and geomagnetic field intensity measured with multiple devices at a multi-floor building in Xi'an Jiatong-Liverpool University, Suzhou, China. We also provide preliminary results of localization and trajectory estimation based on convolutional neural network (CNN) and long short-term memory (LSTM) network with this database. For localization, we map RSS data for a reference point to an image-like, two-dimensional array and then apply CNN which is popular in image and video analysis and recognition. For trajectory estimation, we use a modified random way point model to efficiently generate continuous step traces imitating human walking and train a stacked twolayer LSTM network with the generated data to remember the changing pattern of geomagnetic field intensity against (x, y) coordinates. Experimental results demonstrate the usefulness of our new database and the feasibility of the CNN and LSTMbased localization and trajectory estimation with the database. Index Terms--Indoor localization, trajectory estimation, received signal strength, Wi-Fi fingerprinting, deep learning, CNN, LSTM, geomagnetic field. With the increasing demands for location-aware services and proliferation of smart phones with embedded highprecision sensors, indoor localization has attracted lots of attention from the research community. Global navigation satellite system (GNSS) like global positioning system (GPS), which provides accurate geo-spatial positioning, cannot be used indoors as the radio signals from satellites is easily blocked in an indoor environment.