Goto

Collaborating Authors

 Wei, Jinsheng


iHERO: Interactive Human-oriented Exploration and Supervision Under Scarce Communication

arXiv.org Artificial Intelligence

Exploration of unknown scenes before human entry is essential for safety and efficiency in numerous scenarios, e.g., subterranean exploration, reconnaissance, search and rescue missions. Fleets of autonomous robots are particularly suitable for this task, via concurrent exploration, multi-sensory perception and autonomous navigation. Communication however among the robots can be severely restricted to only close-range exchange via ad-hoc networks. Although some recent works have addressed the problem of collaborative exploration under restricted communication, the crucial role of the human operator has been mostly neglected. Indeed, the operator may: (i) require timely update regarding the exploration progress and fleet status; (ii) prioritize certain regions; and (iii) dynamically move within the explored area; To facilitate these requests, this work proposes an interactive human-oriented online coordination framework for collaborative exploration and supervision under scarce communication (iHERO). The robots switch smoothly and optimally among fast exploration, intermittent exchange of map and sensory data, and return to the operator for status update. It is ensured that these requests are fulfilled online interactively with a pre-specified latency. Extensive large-scale human-in-the-loop simulations and hardware experiments are performed over numerous challenging scenes, which signify its performance such as explored area and efficiency, and validate its potential applicability to real-world scenarios. The videos are available on https://zl-tian.github.io/iHERO/.


Geometric Graph Representation with Learnable Graph Structure and Adaptive AU Constraint for Micro-Expression Recognition

arXiv.org Artificial Intelligence

Micro-expression recognition (MER) is valuable because micro-expressions (MEs) can reveal genuine emotions. Most works take image sequences as input and cannot effectively explore ME information because subtle ME-related motions are easily submerged in unrelated information. Instead, the facial landmark is a low-dimensional and compact modality, which achieves lower computational cost and potentially concentrates on ME-related movement features. However, the discriminability of facial landmarks for MER is unclear. Thus, this paper explores the contribution of facial landmarks and proposes a novel framework to efficiently recognize MEs. Firstly, a geometric two-stream graph network is constructed to aggregate the low-order and high-order geometric movement information from facial landmarks to obtain discriminative ME representation. Secondly, a self-learning fashion is introduced to automatically model the dynamic relationship between nodes even long-distance nodes. Furthermore, an adaptive action unit loss is proposed to reasonably build the strong correlation between landmarks, facial action units and MEs. Notably, this work provides a novel idea with much higher efficiency to promote MER, only utilizing graph-based geometric features. The experimental results demonstrate that the proposed method achieves competitive performance with a significantly reduced computational cost. Furthermore, facial landmarks significantly contribute to MER and are worth further study for high-efficient ME analysis.


A comparative study on movement feature in different directions for micro-expression recognition

arXiv.org Artificial Intelligence

Micro-expression can reflect people's real emotions. Recognizing micro-expressions is difficult because they are small motions and have a short duration. As the research is deepening into micro-expression recognition, many effective features and methods have been proposed. To determine which direction of movement feature is easier for distinguishing micro-expressions, this paper selects 18 directions (including three types of horizontal, vertical and oblique movements) and proposes a new low-dimensional feature called the Histogram of Single Direction Gradient (HSDG) to study this topic. In this paper, HSDG in every direction is concatenated with LBP-TOP to obtain the LBP with Single Direction Gradient (LBP-SDG) and analyze which direction of movement feature is more discriminative for micro-expression recognition. As with some existing work, Euler Video Magnification (EVM) is employed as a preprocessing step. The experiments on the CASME II and SMIC-HS databases summarize the effective and optimal directions and demonstrate that HSDG in an optimal direction is discriminative, and the corresponding LBP-SDG achieves state-of-the-art performance using EVM.