Wei, Haochen
Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter
Esfandiari, Mojtaba, Du, Pengyuan, Wei, Haochen, Gehlbach, Peter, Munawar, Adnan, Kazanzides, Peter, Iordachita, Iulian
Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I$^2$RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I$^2$RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.
Learning Mixtures of Submodular Functions for Image Collection Summarization
Tschiatschek, Sebastian, Iyer, Rishabh K., Wei, Haochen, Bilmes, Jeff A.
We address the problem of image collection summarization by learning mixtures of submodular functions. We argue that submodularity is very natural to this problem, and we show that a number of previously used scoring functions are submodular — a property not explicitly mentioned in these publications. We provide classes of submodular functions capturing the necessary properties of summaries, namely coverage, likelihood, and diversity. To learn mixtures of these submodular functions as scoring functions, we formulate summarization as a supervised learning problem using large-margin structured prediction. Furthermore, we introduce a novel evaluation metric, which we call V-ROUGE, for automatic summary scoring. While a similar metric called ROUGE has been successfully applied to document summarization [14], no such metric was known for quantifying the quality of image collection summaries. We provide a new dataset consisting of 14 real-world image collections along with many human-generated ground truth summaries collected using mechanical turk. We also extensively compare our method with previously explored methods for this problem and show that our learning approach outperforms all competitors on this new dataset. This paper provides, to our knowledge, the first systematic approach for quantifying the problem of image collection summarization, along with a new dataset of image collections and human summaries.