Wei, Dongyan
A Visual-inertial Localization Algorithm using Opportunistic Visual Beacons and Dead-Reckoning for GNSS-Denied Large-scale Applications
Zhang, Liqiang, Tian, Ye, Wei, Dongyan
With the development of smart cities, the demand for continuous pedestrian navigation in large-scale urban environments has significantly increased. While global navigation satellite systems (GNSS) provide low-cost and reliable positioning services, they are often hindered in complex urban canyon environments. Thus, exploring opportunistic signals for positioning in urban areas has become a key solution. Augmented reality (AR) allows pedestrians to acquire real-time visual information. Accordingly, we propose a low-cost visual-inertial positioning solution. This method comprises a lightweight multi-scale group convolution (MSGC)-based visual place recognition (VPR) neural network, a pedestrian dead reckoning (PDR) algorithm, and a visual/inertial fusion approach based on a Kalman filter with gross error suppression. The VPR serves as a conditional observation to the Kalman filter, effectively correcting the errors accumulated through the PDR method. This enables the entire algorithm to ensure the reliability of long-term positioning in GNSS-denied areas. Extensive experimental results demonstrate that our method maintains stable positioning during large-scale movements. Compared to the lightweight MobileNetV3-based VPR method, our proposed VPR solution improves Recall@1 by at least 3\% on two public datasets while reducing the number of parameters by 63.37\%. It also achieves performance that is comparable to the VGG16-based method. The VPR-PDR algorithm improves localization accuracy by more than 40\% compared to the original PDR.
Discover Your Neighbors: Advanced Stable Test-Time Adaptation in Dynamic World
Jiang, Qinting, Ye, Chuyang, Wei, Dongyan, Xue, Yuan, Jiang, Jingyan, Wang, Zhi
Despite progress, deep neural networks still suffer performance declines under distribution shifts between training and test domains, leading to a substantial decrease in Quality of Experience (QoE) for multimedia applications. Existing test-time adaptation (TTA) methods are challenged by dynamic, multiple test distributions within batches. This work provides a new perspective on analyzing batch normalization techniques through class-related and class-irrelevant features, our observations reveal combining source and test batch normalization statistics robustly characterizes target distributions. However, test statistics must have high similarity. We thus propose Discover Your Neighbours (DYN), the first backward-free approach specialized for dynamic TTA. The core innovation is identifying similar samples via instance normalization statistics and clustering into groups which provides consistent class-irrelevant representations. Specifically, Our DYN consists of layer-wise instance statistics clustering (LISC) and cluster-aware batch normalization (CABN). In LISC, we perform layer-wise clustering of approximate feature samples at each BN layer by calculating the cosine similarity of instance normalization statistics across the batch. CABN then aggregates SBN and TCN statistics to collaboratively characterize the target distribution, enabling more robust representations. Experimental results validate DYN's robustness and effectiveness, demonstrating maintained performance under dynamic data stream patterns.