Goto

Collaborating Authors

 Wei, Chen-Yu


Refined Regret for Adversarial MDPs with Linear Function Approximation

arXiv.org Artificial Intelligence

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order $\tilde{\mathcal O}(K^{2/3})$ (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to $\tilde{\mathcal O}(\sqrt K)$ in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves $\tilde{\mathcal O}(K^{8/9})$ regret and greatly improves over the best existing bound $\tilde{\mathcal O}(K^{14/15})$. This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.


First- and Second-Order Bounds for Adversarial Linear Contextual Bandits

arXiv.org Artificial Intelligence

We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.


A Blackbox Approach to Best of Both Worlds in Bandits and Beyond

arXiv.org Artificial Intelligence

Best-of-both-worlds algorithms for online learning which achieve near-optimal regret in both the adversarial and the stochastic regimes have received growing attention recently. Existing techniques often require careful adaptation to every new problem setup, including specialised potentials and careful tuning of algorithm parameters. Yet, in domains such as linear bandits, it is still unknown if there exists an algorithm that can simultaneously obtain $O(\log(T))$ regret in the stochastic regime and $\tilde{O}(\sqrt{T})$ regret in the adversarial regime. In this work, we resolve this question positively and present a general reduction from best of both worlds to a wide family of follow-the-regularized-leader (FTRL) and online-mirror-descent (OMD) algorithms. We showcase the capability of this reduction by transforming existing algorithms that are only known to achieve worst-case guarantees into new algorithms with best-of-both-worlds guarantees in contextual bandits, graph bandits and tabular Markov decision processes.


Best of Both Worlds Policy Optimization

arXiv.org Artificial Intelligence

Policy optimization methods are popular reinforcement learning algorithms in practice. Recent works have built theoretical foundation for them by proving $\sqrt{T}$ regret bounds even when the losses are adversarial. Such bounds are tight in the worst case but often overly pessimistic. In this work, we show that in tabular Markov decision processes (MDPs), by properly designing the regularizer, the exploration bonus and the learning rates, one can achieve a more favorable polylog$(T)$ regret when the losses are stochastic, without sacrificing the worst-case guarantee in the adversarial regime. To our knowledge, this is also the first time a gap-dependent polylog$(T)$ regret bound is shown for policy optimization. Specifically, we achieve this by leveraging a Tsallis entropy or a Shannon entropy regularizer in the policy update. Then we show that under known transitions, we can further obtain a first-order regret bound in the adversarial regime by leveraging the log-barrier regularizer.


Independent Policy Gradient for Large-Scale Markov Potential Games: Sharper Rates, Function Approximation, and Game-Agnostic Convergence

arXiv.org Artificial Intelligence

We examine global non-asymptotic convergence properties of policy gradient methods for multi-agent reinforcement learning (RL) problems in Markov potential games (MPG). To learn a Nash equilibrium of an MPG in which the size of state space and/or the number of players can be very large, we propose new independent policy gradient algorithms that are run by all players in tandem. When there is no uncertainty in the gradient evaluation, we show that our algorithm finds an $\epsilon$-Nash equilibrium with $O(1/\epsilon^2)$ iteration complexity which does not explicitly depend on the state space size. When the exact gradient is not available, we establish $O(1/\epsilon^5)$ sample complexity bound in a potentially infinitely large state space for a sample-based algorithm that utilizes function approximation. Moreover, we identify a class of independent policy gradient algorithms that enjoys convergence for both zero-sum Markov games and Markov cooperative games with the players that are oblivious to the types of games being played. Finally, we provide computational experiments to corroborate the merits and the effectiveness of our theoretical developments.


Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses

arXiv.org Machine Learning

Policy optimization methods are among the most widely-used methods in reinforcement learning. Its empirical success has been demonstrated in various domains such as computer games [Schulman et al., 2017] and robotics [Levine and Koltun, 2013]. However, due to its local-search nature, global optimality guarantees of policy optimization often rely on unrealistic assumptions to ensure global exploration (see e.g., [Abbasi-Yadkori et al., 2019, Agarwal et al., 2020b, Neu and Olkhovskaya, 2020, Wei et al., 2021]), making it theoretically less appealing compared to other methods. Motivated by this issue, a line of recent works [Cai et al., 2020, Shani et al., 2020, Agarwal et al., 2020a, Zanette et al., 2021] equip policy optimization with global exploration by adding exploration bonuses to the update, and prove favorable guarantees even without making extra exploratory assumptions. Moreover, they all demonstrate some robustness aspect of policy optimization (such as being able to handle adversarial losses or a certain degree of model misspecification). Despite these important progresses, however, many limitations still exist, including worse regret rates comparing to the best value-based or model-based approaches [Shani et al., 2020, Agarwal et al., 2020a, Zanette et al., 2021], or requiring full-information feedback on the entire loss function (as opposed to the more realistic bandit feedback) [Cai et al., 2020]. To address these issues, in this work, we propose a new type of exploration bonuses called dilated bonuses, which satisfies a certain dilated Bellman equation and provably leads to improved exploration compared to existing works (Section 3). We apply this general idea to advance the state-of-the-art of policy optimization for learning finite-horizon episodic MDPs with adversarial losses and bandit feedback. More specifically, our main results are: - First, in the tabular setting, addressing the main open question left in [Shani et al., 2020], we improve their ร•(T


Non-stationary Reinforcement Learning without Prior Knowledge: An Optimal Black-box Approach

arXiv.org Artificial Intelligence

We propose a black-box reduction that turns a certain reinforcement learning algorithm with optimal regret in a (near-)stationary environment into another algorithm with optimal dynamic regret in a non-stationary environment, importantly without any prior knowledge on the degree of non-stationarity. By plugging different algorithms into our black-box, we provide a list of examples showing that our approach not only recovers recent results for (contextual) multi-armed bandits achieved by very specialized algorithms, but also significantly improves the state of the art for linear bandits, episodic MDPs, and infinite-horizon MDPs in various ways. Specifically, in most cases our algorithm achieves the optimal dynamic regret $\widetilde{\mathcal{O}}(\min\{\sqrt{LT}, \Delta^{1/3}T^{2/3}\})$ where $T$ is the number of rounds and $L$ and $\Delta$ are the number and amount of changes of the world respectively, while previous works only obtain suboptimal bounds and/or require the knowledge of $L$ and $\Delta$.


Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games

arXiv.org Artificial Intelligence

We study infinite-horizon discounted two-player zero-sum Markov games, and develop a decentralized algorithm that provably converges to the set of Nash equilibria under self-play. Our algorithm is based on running an Optimistic Gradient Descent Ascent algorithm on each state to learn the policies, with a critic that slowly learns the value of each state. To the best of our knowledge, this is the first algorithm in this setting that is simultaneously rational (converging to the opponent's best response when it uses a stationary policy), convergent (converging to the set of Nash equilibria under self-play), agnostic (no need to know the actions played by the opponent), symmetric (players taking symmetric roles in the algorithm), and enjoying a finite-time last-iterate convergence guarantee, all of which are desirable properties of decentralized algorithms.


Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs

arXiv.org Machine Learning

We develop a new approach to obtaining high probability regret bounds for online learning with bandit feedback against an adaptive adversary. While existing approaches all require carefully constructing optimistic and biased loss estimators, our approach uses standard unbiased estimators and relies on a simple increasing learning rate schedule, together with the help of logarithmically homogeneous self-concordant barriers and a strengthened Freedman's inequality. Besides its simplicity, our approach enjoys several advantages. First, the obtained high-probability regret bounds are data-dependent and could be much smaller than the worst-case bounds, which resolves an open problem asked by Neu (2015). Second, resolving another open problem of Bartlett et al. (2008) and Abernethy and Rakhlin (2009), our approach leads to the first general and efficient algorithm with a high-probability regret bound for adversarial linear bandits, while previous methods are either inefficient or only applicable to specific action sets. Finally, our approach can also be applied to learning adversarial Markov Decision Processes and provides the first algorithm with a high-probability small-loss bound for this problem.


Linear Last-iterate Convergence in Constrained Saddle-point Optimization

arXiv.org Machine Learning

Optimistic Gradient Descent Ascent (OGDA) and Optimistic Multiplicative Weights Update (OMWU) for saddle-point optimization have received growing attention due to their favorable last-iterate convergence. However, their behaviors for simple bilinear games over the probability simplex are still not fully understood -- previous analysis lacks explicit convergence rates, only applies to an exponentially small learning rate, or requires additional assumptions such as the uniqueness of the optimal solution. In this work, we significantly expand the understanding of last-iterate convergence for OGDA and OMWU in the constrained setting. Specifically, for OMWU in bilinear games over the simplex, we show that when the equilibrium is unique, linear last-iterate convergence is achievable with a constant learning rate, which improves the result of (Daskalakis & Panageas, 2019) under the same assumption. We then significantly extend the results to more general objectives and feasible sets for the projected OGDA algorithm, by introducing a sufficient condition under which OGDA exhibits concrete last-iterate convergence rates with a constant learning rate. We show that bilinear games over any polytope satisfy this condition and OGDA converges exponentially fast even without the unique equilibrium assumption. Our condition also holds for strongly-convex-strongly-concave functions, recovering the result of (Hsieh et al., 2019). Finally, we provide experimental results to further support our theory.