Wei, Canshi
DataLab: A Unified Platform for LLM-Powered Business Intelligence
Weng, Luoxuan, Tang, Yinghao, Feng, Yingchaojie, Chang, Zhuo, Chen, Peng, Chen, Ruiqin, Feng, Haozhe, Hou, Chen, Huang, Danqing, Li, Yang, Rao, Huaming, Wang, Haonan, Wei, Canshi, Yang, Xiaofeng, Zhang, Yuhui, Zheng, Yifeng, Huang, Xiuqi, Zhu, Minfeng, Ma, Yuxin, Cui, Bin, Chen, Wei
Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.
Enhancing Fine-Grained Image Classifications via Cascaded Vision Language Models
Wei, Canshi
Fine-grained image classification, particularly in zero/few-shot scenarios, presents a significant challenge for vision-language models (VLMs), such as CLIP. These models often struggle with the nuanced task of distinguishing between semantically similar classes due to limitations in their pre-trained recipe, which lacks supervision signals for fine-grained categorization. This paper introduces CascadeVLM, an innovative framework that overcomes the constraints of previous CLIP-based methods by effectively leveraging the granular knowledge encapsulated within large vision-language models (LVLMs). Experiments across various fine-grained image datasets demonstrate that CascadeVLM significantly outperforms existing models, specifically on the Stanford Cars dataset, achieving an impressive 85.6% zero-shot accuracy. Performance gain analysis validates that LVLMs produce more accurate predictions for challenging images that CLIPs are uncertain about, bringing the overall accuracy boost. Our framework sheds light on a holistic integration of VLMs and LVLMs for effective and efficient fine-grained image classification.