Wei, Bifan
GKG-LLM: A Unified Framework for Generalized Knowledge Graph Construction
Zhang, Jian, Wei, Bifan, Qi, Shihao, Zhu, haiping, Liu, Jun, Lin, Qika
The construction of Generalized Knowledge Graph (GKG), including knowledge graph, event knowledge graph and commonsense knowledge graph, is fundamental for various natural language processing tasks. Current studies typically construct these types of graph separately, overlooking holistic insights and potential unification that could be beneficial in computing resources and usage perspectives. However, a key challenge in developing a unified framework for GKG is obstacles arising from task-specific differences. In this study, we propose a unified framework for constructing generalized knowledge graphs to address this challenge. First, we collect data from 15 sub-tasks in 29 datasets across the three types of graphs, categorizing them into in-sample, counter-task, and out-of-distribution (OOD) data. Then, we propose a three-stage curriculum learning fine-tuning framework, by iteratively injecting knowledge from the three types of graphs into the Large Language Models. Extensive experiments show that our proposed model improves the construction of all three graph types across in-domain, OOD and counter-task data.
QGEval: A Benchmark for Question Generation Evaluation
Fu, Weiping, Wei, Bifan, Hu, Jianxiang, Cai, Zhongmin, Liu, Jun
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is frequently used in the field of question generation (QG) and is one of the most accurate evaluation methods. It also serves as the standard for automatic metrics. However, there is a lack of unified evaluation criteria, which hampers the development of both QG technologies and automatic evaluation methods. To address this, we propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We demonstrate the appropriateness of these dimensions by examining their correlations and distinctions. Analysis with QGEval reveals that 1) most QG models perform unsatisfactorily in terms of answerability and answer consistency, and 2) existing metrics fail to align well with human assessments when evaluating generated questions across the 7 dimensions. We expect this work to foster the development of both QG technologies and automatic metrics for QG.
Knowledge forest: a novel model to organize knowledge fragments
Zheng, Qinghua, Liu, Jun, Zeng, Hongwei, Guo, Zhaotong, Wu, Bei, Wei, Bifan
With the rapid growth of knowledge, it shows a steady trend of knowledge fragmentization. Knowledge fragmentization manifests as that the knowledge related to a specific topic in a course is scattered in isolated and autonomous knowledge sources. We term the knowledge of a facet in a specific topic as a knowledge fragment. The problem of knowledge fragmentization brings two challenges: First, knowledge is scattered in various knowledge sources, which exerts users' considerable efforts to search for the knowledge of their interested topics, thereby leading to information overload. Second, learning dependencies which refer to the precedence relationships between topics in the learning process are concealed by the isolation and autonomy of knowledge sources, thus causing learning disorientation. To solve the knowledge fragmentization problem, we propose a novel knowledge organization model, knowledge forest, which consists of facet trees and learning dependencies. Facet trees can organize knowledge fragments with facet hyponymy to alleviate information overload. Learning dependencies can organize disordered topics to cope with learning disorientation. We conduct extensive experiments on three manually constructed datasets from the Data Structure, Data Mining, and Computer Network courses, and the experimental results show that knowledge forest can effectively organize knowledge fragments, and alleviate information overload and learning disorientation.