Wegner, Jan Dirk
Lossy Neural Compression for Geospatial Analytics: A Review
Gomes, Carlos, Wittmann, Isabelle, Robert, Damien, Jakubik, Johannes, Reichelt, Tim, Martone, Michele, Maurogiovanni, Stefano, Vinge, Rikard, Hurst, Jonas, Scheurer, Erik, Sedona, Rocco, Brunschwiler, Thomas, Kesselheim, Stefan, Batic, Matej, Stier, Philip, Wegner, Jan Dirk, Cavallaro, Gabriele, Pebesma, Edzer, Marszalek, Michael, Belenguer-Plomer, Miguel A, Adriko, Kennedy, Fraccaro, Paolo, Kienzler, Romeo, Briq, Rania, Benassou, Sabrina, Lazzarini, Michele, Albrecht, Conrad M
Over the past decades, there has been an explosion in the amount of available Earth Observation (EO) data. The unprecedented coverage of the Earth's surface and atmosphere by satellite imagery has resulted in large volumes of data that must be transmitted to ground stations, stored in data centers, and distributed to end users. Modern Earth System Models (ESMs) face similar challenges, operating at high spatial and temporal resolutions, producing petabytes of data per simulated day. Data compression has gained relevance over the past decade, with neural compression (NC) emerging from deep learning and information theory, making EO data and ESM outputs ideal candidates due to their abundance of unlabeled data. In this review, we outline recent developments in NC applied to geospatial data. We introduce the fundamental concepts of NC including seminal works in its traditional applications to image and video compression domains with focus on lossy compression. We discuss the unique characteristics of EO and ESM data, contrasting them with "natural images", and explain the additional challenges and opportunities they present. Moreover, we review current applications of NC across various EO modalities and explore the limited efforts in ESM compression to date. The advent of self-supervised learning (SSL) and foundation models (FM) has advanced methods to efficiently distill representations from vast unlabeled data. We connect these developments to NC for EO, highlighting the similarities between the two fields and elaborate on the potential of transferring compressed feature representations for machine--to--machine communication. Based on insights drawn from this review, we devise future directions relevant to applications in EO and ESM.
Deep learning meets tree phenology modeling: PhenoFormer vs. process-based models
Garnot, Vivien Sainte Fare, Spafford, Lynsay, Lever, Jelle, Sigg, Christian, Pietragalla, Barbara, Vitasse, Yann, Gessler, Arthur, Wegner, Jan Dirk
Phenology, the timing of cyclical plant life events such as leaf emergence and coloration, is crucial in the bio-climatic system. Climate change drives shifts in these phenological events, impacting ecosystems and the climate itself. Accurate phenology models are essential to predict the occurrence of these phases under changing climatic conditions. Existing methods include hypothesis-driven process models and data-driven statistical approaches. Process models account for dormancy stages and various phenology drivers, while statistical models typically rely on linear or traditional machine learning techniques. Research shows that process models often outperform statistical methods when predicting under climate conditions outside historical ranges, especially with climate change scenarios. However, deep learning approaches remain underexplored in climate phenology modeling. We introduce PhenoFormer, a neural architecture better suited than traditional statistical methods at predicting phenology under shift in climate data distribution, while also bringing significant improvements or performing on par to the best performing process-based models. Our numerical experiments on a 70-year dataset of 70,000 phenological observations from 9 woody species in Switzerland show that PhenoFormer outperforms traditional machine learning methods by an average of 13% R2 and 1.1 days RMSE for spring phenology, and 11% R2 and 0.7 days RMSE for autumn phenology, while matching or exceeding the best process-based models. Our results demonstrate that deep learning has the potential to be a valuable methodological tool for accurate climate-phenology prediction, and our PhenoFormer is a first promising step in improving phenological predictions before a complete understanding of the underlying physiological mechanisms is available.
Mixture of Experts with Uncertainty Voting for Imbalanced Deep Regression Problems
Jiang, Yuchang, Garnot, Vivien Sainte Fare, Schindler, Konrad, Wegner, Jan Dirk
Data imbalance is ubiquitous when applying machine learning to real-world problems, particularly regression problems. If training data are imbalanced, the learning is dominated by the densely covered regions of the target distribution, consequently, the learned regressor tends to exhibit poor performance in sparsely covered regions. Beyond standard measures like over-sampling or re-weighting, there are two main directions to handle learning from imbalanced data. For regression, recent work relies on the continuity of the distribution; whereas for classification there has been a trend to employ mixture-of-expert models and let some ensemble members specialize in predictions for the sparser regions. In our method, dubbed MOUV, we propose to leverage recent work on probabilistic deep learning and integrate it in a mixture-of-experts approach for imbalanced regression. We replace traditional regression losses with negative log-likelihood which also predicts sample-wise aleatoric uncertainty. We show experimentally that such a loss handles the imbalance better. Secondly, we use the readily available aleatoric uncertainty values to fuse the predictions of a mixture-of-experts model, thus obviating the need for a separate aggregation module. We compare our method with existing alternatives on multiple public benchmarks and show that MOUV consistently outperforms the prior art, while at the same time producing better calibrated uncertainty estimates. Our code is available at link-upon-publication.
Fine-grained Species Recognition with Privileged Pooling: Better Sample Efficiency Through Supervised Attention
Rodriguez, Andres C., D'Aronco, Stefano, Schindler, Konrad, Wegner, Jan Dirk
We propose a scheme for supervised image classification that uses privileged information, in the form of keypoint annotations for the training data, to learn strong models from small and/or biased training sets. Our main motivation is the recognition of animal species for ecological applications such as biodiversity modelling, which is challenging because of long-tailed species distributions due to rare species, and strong dataset biases such as repetitive scene background in camera traps. To counteract these challenges, we propose a visual attention mechanism that is supervised via keypoint annotations that highlight important object parts. This privileged information, implemented as a novel privileged pooling operation, is only required during training and helps the model to focus on regions that are discriminative. In experiments with three different animal species datasets, we show that deep networks with privileged pooling can use small training sets more efficiently and generalize better.
An evaluation of deep learning models for predicting water depth evolution in urban floods
Russo, Stefania, Perraudin, Nathanaรซl, Stalder, Steven, Perez-Cruz, Fernando, Leitao, Joao Paulo, Obozinski, Guillaume, Wegner, Jan Dirk
In this technical report we compare different deep learning models for prediction of water depth rasters at high spatial resolution. Efficient, accurate, and fast methods for water depth prediction are nowadays important as urban floods are increasing due to higher rainfall intensity caused by climate change, expansion of cities and changes in land use. While hydrodynamic models models can provide reliable forecasts by simulating water depth at every location of a catchment, they also have a high computational burden which jeopardizes their application to real-time prediction in large urban areas at high spatial resolution. Here, we propose to address this issue by using data-driven techniques. Specifically, we evaluate deep learning models which are trained to reproduce the data simulated by the CADDIES cellular-automata flood model, providing flood forecasts that can occur at different future time horizons. The advantage of using such models is that they can learn the underlying physical phenomena a priori, preventing manual parameter setting and computational burden. We perform experiments on a dataset consisting of two catchments areas within Switzerland with 18 simpler, short rainfall patterns and 4 long, more complex ones. Our results show that the deep learning models present in general lower errors compared to the other methods, especially for water depths $>0.5m$. However, when testing on more complex rainfall events or unseen catchment areas, the deep models do not show benefits over the simpler ones.
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
Turkoglu, Mehmet Ozgur, Becker, Alexander, Gรผndรผz, Hรผseyin Anil, Rezaei, Mina, Bischl, Bernd, Daudt, Rodrigo Caye, D'Aronco, Stefano, Wegner, Jan Dirk, Schindler, Konrad
The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it and comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.
Country-wide Retrieval of Forest Structure From Optical and SAR Satellite Imagery With Deep Ensembles
Becker, Alexander, Russo, Stefania, Puliti, Stefano, Lang, Nico, Schindler, Konrad, Wegner, Jan Dirk
Monitoring and managing Earth's forests in an informed manner is an important requirement for addressing challenges like biodiversity loss and climate change. While traditional in situ or aerial campaigns for forest assessments provide accurate data for analysis at regional level, scaling them to entire countries and beyond with high temporal resolution is hardly possible. In this work, we propose a method based on deep ensembles that densely estimates forest structure variables at country-scale with 10-meter resolution, using freely available satellite imagery as input. Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic-aperture radar images into maps of five different forest structure variables: 95th height percentile, mean height, density, Gini coefficient, and fractional cover. We train and test our model on reference data from 41 airborne laser scanning missions across Norway and demonstrate that it is able to generalize to unseen test regions, achieving normalized mean absolute errors between 11% and 15%, depending on the variable. Our work is also the first to propose a variant of so-called Bayesian deep learning to densely predict multiple forest structure variables with well-calibrated uncertainty estimates from satellite imagery. The uncertainty information increases the trustworthiness of the model and its suitability for downstream tasks that require reliable confidence estimates as a basis for decision making. We present an extensive set of experiments to validate the accuracy of the predicted maps as well as the quality of the predicted uncertainties. To demonstrate scalability, we provide Norway-wide maps for the five forest structure variables.