Weeraddana, Dilusha
Long-Term Pipeline Failure Prediction Using Nonparametric Survival Analysis
Weeraddana, Dilusha, MallawaArachchi, Sudaraka, Warnakula, Tharindu, Li, Zhidong, Wang, Yang
Australian water infrastructure is more than a hundred years old, thus has begun to show its age through water main failures. Our work concerns approximately half a million pipelines across major Australian cities that deliver water to houses and businesses, serving over five million customers. Failures on these buried assets cause damage to properties and water supply disruptions. We applied Machine Learning techniques to find a cost-effective solution to the pipe failure problem in these Australian cities, where on average 1500 of water main failures occur each year. To achieve this objective, we construct a detailed picture and understanding of the behaviour of the water pipe network by developing a Machine Learning model to assess and predict the failure likelihood of water main breaking using historical failure records, descriptors of pipes and other environmental factors. Our results indicate that our system incorporating a nonparametric survival analysis technique called "Random Survival Forest" outperforms several popular algorithms and expert heuristics in long-term prediction. In addition, we construct a statistical inference technique to quantify the uncertainty associated with the long-term predictions.
Energy consumption forecasting using a stacked nonparametric Bayesian approach
Weeraddana, Dilusha, Khoa, Nguyen Lu Dang, Neil, Lachlan O, Wang, Weihong, Cai, Chen
In this paper, the process of forecasting household energy consumption is studied within the framework of the nonparametric Gaussian Process (GP), using multiple short time series data. As we begin to use smart meter data to paint a clearer picture of residential electricity use, it becomes increasingly apparent that we must also construct a detailed picture and understanding of consumer's complex relationship with gas consumption. Both electricity and gas consumption patterns are highly dependent on various factors, and the intricate interplay of these factors is sophisticated. Moreover, since typical gas consumption data is low granularity with very few time points, naive application of conventional time-series forecasting techniques can lead to severe over-fitting. Given these considerations, we construct a stacked GP method where the predictive posteriors of each GP applied to each task are used in the prior and likelihood of the next level GP. We apply our model to a real-world dataset to forecast energy consumption in Australian households across several states. We compare intuitively appealing results against other commonly used machine learning techniques. Overall, the results indicate that the proposed stacked GP model outperforms other forecasting techniques that we tested, especially when we have a multiple short time-series instances.