Goto

Collaborating Authors

 Weber, Simon


Humanity's Last Exam

arXiv.org Artificial Intelligence

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.


Reducing Nearest Neighbor Training Sets Optimally and Exactly

arXiv.org Artificial Intelligence

In nearest-neighbor classification, a training set $P$ of points in $\mathbb{R}^d$ with given classification is used to classify every point in $\mathbb{R}^d$: Every point gets the same classification as its nearest neighbor in $P$. Recently, Eppstein [SOSA'22] developed an algorithm to detect the relevant training points, those points $p\in P$, such that $P$ and $P\setminus\{p\}$ induce different classifications. We investigate the problem of finding the minimum cardinality reduced training set $P'\subseteq P$ such that $P$ and $P'$ induce the same classification. We show that the set of relevant points is such a minimum cardinality reduced training set if $P$ is in general position. Furthermore, we show that finding a minimum cardinality reduced training set for possibly degenerate $P$ is in P for $d=1$, and NP-complete for $d\geq 2$.


Training Fully Connected Neural Networks is $\exists\mathbb{R}$-Complete

arXiv.org Artificial Intelligence

We consider the algorithmic problem of finding the optimal weights and biases for a two-layer fully connected neural network to fit a given set of data points. This problem is known as empirical risk minimization in the machine learning community. We show that the problem is $\exists\mathbb{R}$-complete. This complexity class can be defined as the set of algorithmic problems that are polynomial-time equivalent to finding real roots of a polynomial with integer coefficients. Furthermore, we show that arbitrary algebraic numbers are required as weights to be able to train some instances to optimality, even if all data points are rational. Our results hold even if the following restrictions are all added simultaneously. $\bullet$ There are exactly two output neurons. $\bullet$ There are exactly two input neurons. $\bullet$ The data has only 13 different labels. $\bullet$ The number of hidden neurons is a constant fraction of the number of data points. $\bullet$ The target training error is zero. $\bullet$ The ReLU activation function is used. This shows that even very simple networks are difficult to train. The result explains why typical methods for $\mathsf{NP}$-complete problems, like mixed-integer programming or SAT-solving, cannot train neural networks to global optimality, unless $\mathsf{NP}=\exists\mathbb{R}$. We strengthen a recent result by Abrahamsen, Kleist and Miltzow [NeurIPS 2021].